Author: Decking, W.
Paper Title Page
MOPGF101 High Level Controls for the European XFEL 1
  • L. Fröhlich, B. Beutner, W. Decking, O. Hensler, R. Kammering, T. Limberg, S.M. Meykopff, J. Wilgen
    DESY, Hamburg, Germany
  The European X-Ray Free-Electron Laser (XFEL) will generate extremely short and intense X-ray flashes from the electron beam of a 2.1 km long superconducting linear accelerator. Due to the complexity of the facility and the sheer number of subsystems and components, special emphasis needs to be placed on the automatization of procedures, on the abstraction of machine parameters, and on the development of user-friendly high-level software for the operation of the accelerator. This paper gives an overview of the ongoing work and highlights several new tools and concepts.  
TUD3O04 The Virtual European XFEL Accelerator 1
  • R. Kammering, W. Decking, L. Fröhlich, O. Hensler, T. Limberg, S.M. Meykopff, K.R. Rehlich, V. Rybnikov, J. Wilgen, T. Wilksen
    DESY, Hamburg, Germany
  The ambitious commissioning plans for the European XFEL require that many of the high-level controls are ready from the beginning. The idea arose to create a virtual environment to carry out such developments and tests in advance, to test interfaces, software in general and the visualisation of the variety of components. Based on the experiences and on the systems that are already in operation at the FLASH facility for several years, such a virtual environment is being created. The system can already simulate most of the key components of the upcoming accelerator. Core of the system is an event synchronized data acquisition system (DAQ). The interfaces of the DAQ system towards the device level, as well as to the high-level side is utilising the same software stack as the production system does. Thus, the software can be developed and used interchangeably between the virtual and the real machine. This allows to test concepts, interfaces and identify problems and errors at an early stage. In this paper the opportunities arising from the operation of such a virtual machine will be presented. The limits in terms of the resulting complexity and physical relationships will also be shown.  
slides icon Slides TUD3O04 [3.225 MB]