Author: Fukui, T.
Paper Title Page
MOM305 Control System for a Dedicated Accelerator for SACLA Wide-Band Beam Line 1
  • N. Hosoda, T. Fukui
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • M. Ishii
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Ohshima, T. Sakurai, H. Takebe
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  This paper report about a control system for a dedicated accelerator for SACLA wide-band beam line (BL1), requirements, construction strategies, and present status. At the upgrade plan of SACLA BL1, it was decided to move SCSS test accelerator, which operated from 2005 to 2013, to the upstream of the BL1 in the undulator hall. The control system of the accelerator had to be operated seamlessly with SACLA, to reuse old components as much as possible, and to avoid stopping SACLA user experiments during the start up. The system was constructed with MADOCA which is already used at SACLA. In the control components, VME optical DIO cards and chassis for magnet power supplies were reused after cleaning and checking that there was no degradation of quality. The RF conditioning of the accelerator was started in in October 2014, while SACLA user experiments were going on. A data collection system was prepared, myCC, having a MADOCA compatible interface and an independent database from SACLA. It enabled efficient start up and after enough debugging, the data collection was successfully merged to SACLA in January 2015. Beam commissioning of the accelerator is planned for autumn 2015.  
slides icon Slides MOM305 [0.964 MB]  
poster icon Poster MOM305 [0.363 MB]  
WEPGF014 A Data Acquisition System for Abnormal RF Waveform at SACLA 1
  • M. Ishii, M. Kago
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Fukui
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • T. Hasegawa, M. Yoshioka
    SES, Hyogo-pref., Japan
  • T. Inagaki, H. Maesaka, T. Ohshima, Y. Otake
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Maruyama
    RIKEN/SPring-8, Hyogo, Japan
  At the X-ray Free Electron Laser (XFEL) facility, SACLA, an event-synchronized data acquisition system has been utilized for the XFEL operation. This system collects every shot-by-shot data, such as point data of the phase and amplitude of the RF cavity pickup signals, in synchronization with the beam operation cycle. This system also acquires RF waveform data every 10 minutes. In addition to the periodic waveform acquisition, an abnormal RF waveform that suddenly occurs should be collected for failure diagnostics. Therefore, we developed an abnormal RF waveform data acquisition (DAQ) system, which consists of the VME systems, a cache server, and a NoSQL database system, Apache Cassandra. When the VME system detects an abnormal RF waveform, it collects all related waveforms of the same shot. The waveforms are stored in Cassandra through the cache server. Before the installation to SACLA, we ensured the performance with a prototype system. In 2014, we installed the DAQ system into the injection part with five VME systems. In 2015, we will acquire waveforms from the low-level RF control system configured by 74 VME systems at the SACLA accelerator.  
poster icon Poster WEPGF014 [0.974 MB]