Author: Kaji, H.
Paper Title Page
MOB3O04 The Construction Status of the SuperKEKB Control System 1
 
  • M. Iwasaki, A. Akiyama, K. Furukawa, H. Kaji, T. Naito, T.T. Nakamura, J.-I. Odagiri, S. Sasaki
    KEK, Ibaraki, Japan
  • T. Aoyama, M. Fujita, T. Nakamura, K. Yoshii
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • K. Asano, M. Hirose
    KIS, Ibaraki, Japan
  • Y. Iitsuka, N. Yoshifuji
    EJIT, Hitachi, Ibaraki, Japan
 
  SuperKEKB is the upgrade of KEKB, the asymmetric energy electron-positron collider for the B-factory experiment in Japan. It aims at the 40-times higher luminosity than the world record by KEKB. The KEKB control system has been built based on EPICS at the equipment layer and scripting languages at the operation layer. The SuperKEKB control system continues to employ these frameworks while we implement new features for the successful operation at such a high luminosity. As the commissioning of the SuperKEKB main storage rings is scheduled to start in 2016, the construction of the control system is now in the final phase. We have upgraded and reinforced the network system, server computers and operator consoles. Most of the VME-based IOCs (I/O Controllers), which has been widely used in KEKB, are upgraded while the PLC-based IOCs are also widely introduced. The new timing system has been developed in order to handle the complicated injection scheme of the SuperKEKB accelerator complex efficiently. The new beam abort trigger system and the new beam gate control system have been developed, and so on. The construction status of the SuperKEKB accelerator control system will be presented.  
slides icon Slides MOB3O04 [11.615 MB]  
 
WEC3O04 New Event Timing System for Damping Ring at SuperKEKB 1
 
  • H. Kaji, K. Furukawa, M. Iwasaki, T. Kobayashi, F. Miyahara, T.T. Nakamura, M. Satoh, M. Suetake, M. Tobiyama
    KEK, Ibaraki, Japan
  • Y. Iitsuka
    EJIT, Hitachi, Ibaraki, Japan
  • T. Kudou, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • M. Liu, C.X. Yin
    SINAP, Shanghai, People's Republic of China
 
  SuperKEKB is the upgrade of KEKB, which is the world's largest luminosity accelerator at KEK. One of key items to realize 40 times larger luminosity than that of KEKB is damping ring (DR) for positron injection. The injector linac (LINAC) once stores the produced positrons into DR and suppress their emittance. Then low emittance positrons are extracted from DR and injected into the main ring. For this complicated injection process, the Event Timing System* for LINAC** was upgraded and its soundness is demonstrated by injecting electrons into two light source rings***. New Event modules were also installed under the Event network for LINAC as the sub timing system for DR. New Event modules were developed which can be operated with the different Event clock from that of upstream modules. It solves the difference in RF frequency between LINAC (2856MHz) and DR (509MHz). This sub timing system can manage the triggers towards totally 84 BPMs at DR although it consists of only 5 Event modules. The timing of those triggers can be independently set in more precise than 100ps. The requirements to DR timing system and the newly developed modules with its configuration at DR are explained.
*H. Kaji et al., THCOCA04, Proc. of ICALEPCS'13, San Francisco, CA.**H. Kaji et al., TUPRI109, Proc. of IPAC'14, Dresden, Germany.***Abstract submitted to IPAC'15.
 
slides icon Slides WEC3O04 [1.496 MB]  
 
WEPGF085 The Construction of the SuperKEKB Magnet Control System 1
 
  • T.T. Nakamura, A. Akiyama, M. Iwasaki, H. Kaji, J.-I. Odagiri, S. Sasaki
    KEK, Ibaraki, Japan
  • T. Aoyama, T. Nakamura, K. Yoshii
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • N. Yoshifuji
    EJIT, Hitachi, Ibaraki, Japan
 
  There were more than 2500 magnet power supplies for KEKB storage rings and injection beam transport lines. For the remote control of such a large number of power supplies, the Power Supply Interface Controller Module (PSICM), which is plugged into each power supply, was developed. It has a microprocessor, ARCNET interface, trigger signal input interface, and parallel interface to the power supply. The PSICM is not only an interface card but also controls synchronous operation of the multiple power supplies with an arbitrary tracking curve. For SuperKEKB we have developed the upgraded version of the PSICM. It has the fully backward compatible interface to the power supply. The enhanced features includes high speed ARCNET communication and redundant trigger signals. Towards the phase 1 commissioning of SuperKEKB, the construction of the magnet control system is ongoing. First mass production of 1000 PSICMs has been completed and their installation is in progress. The construction status of the magnet control system is presented in this paper.  
poster icon Poster WEPGF085 [2.287 MB]