Author: Miller, T.A.
Paper Title Page
MOPGF155 Design and Status for the Electron Lens Project at the Relativistic Heavy Ion Collider 1
 
  • J.P. Jamilkowski, Z. Altinbas, M.R. Costanzo, T. D'Ottavio, X. Gu, M. Harvey, P. K. Kankiya, R.J. Michnoff, T.A. Miller, S. Nemesure, T.C. Shrey
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Lens upgrade project at the Relativistic Heavy Ion Collider (RHIC) has reached an operational status, whereby intense, pulsed or DC beams of electrons are generated in order to interact with the RHIC polarized proton beams in both the Blue and Yellow Rings at the 10 o'clock Interaction Region. Interactions between the electrons and protons are utilized to counteract the beam-beam effect that arises from the desired polarized proton collisions, which result in a higher RHIC luminosity. A complex system for operating the e-lens has been developed, including superconducting and non-superconducting magnet controls, instrumentation systems, a COTS-based Machine Protection System, custom Blue and Yellow e-lens timing systems for synchronizing the electron beam with the RHIC timing system, beam alignment software tools for maximizing electron-proton collisions, as well as complex user interfaces to support routine operation of the system. e-lens software and hardware design will be presented, as well as recent updates to the system that were required in order to meet changing system requirements in preparation for the first operational run of the system.
 
poster icon Poster MOPGF155 [1.826 MB]  
 
WEC3O06 ERL Time Management System 1
 
  • P. K. Kankiya, T.A. Miller, B. Sheehy
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Energy Recovery LINAC (ERL) at BNL is an R&D project. A timing system was developed in conjunction with other available timing systems in order to operate and synchronize instruments at the ERL. This paper describes the time management software which is responsible for automating the delay configuration based on beam power and instrument limitations, for maintaining beam operational parameters, and respond to machine protection system.
 
slides icon Slides WEC3O06 [4.145 MB]