Author: Nordt, A.
Paper Title Page
MOPGF126 A Modified Functional Safety Method for Predicting False Beam Trips and Blind Failures in the Design Phase of the ESS Beam Interlock System 1
  • R. Andersson, E. Bargalló, A. Monera Martinez, A. Nordt
    ESS, Lund, Sweden
  As accelerators are becoming increasingly powerful, the requirement of a reliable machine protection system is apparent to avoid beam-induced damage to the equipment. A missed detection of a hazard is undesirable as it could lead to equipment damage on very short time scales. In addition, the number of false beam trips, leading to unnecessary downtime, should be kept at a minimum to achieve user satisfaction. This paper describes a method for predicting and mitigating these faults, based on the architecture of the system. The method is greatly influenced by the IEC61508 standard for functional safety for the industry and implements a Failure Mode, Effects, and Diagnostics Analysis (FMEDA). It is suggested that this method is applied at an early stage in the design phase of a high-power accelerator, so that possible protection and mitigation can be suggested and implemented in the interlock system logic. The method described in this paper is currently applied at the European Spallation Source and the results follow from the analysis on the Beam Interlock System of this facility.  
MOPGF138 Overview and Design Status of the Fast Beam Interlock System at ESS 1
  • A. Monera Martinez, R. Andersson, A. Nordt, M. Zaera-Sanz
    ESS, Lund, Sweden
  • C. Hilbes
    ZHAW, Winterthur, Switzerland
  The ESS, consisting of a pulsed proton linear accelerator, a rotating spallation target designed for an average beam power of up to 5 MW, and a suite of neutron instruments, requires a large variety of instrumentation, both for controlling as well as protecting the different hardware systems and the beam. The ESS beam power is unprecedented and an uncontrolled release could lead to serious damage of equipment installed along the tunnel and target station within only a few microseconds. Major failures of certain equipment will result in long repair times, because it is delicate and difficult to access and sometimes located in high radiation areas. To optimize the operational efficiency of the facility, accidents should be avoided and interruptions should be rare and limited to a short time. Hence, a sophisticated machine protection system is required. In order to stop efficiently the proton beam production in case of failures, a Fast Beam Interlock (FBI) system with a targeted reaction time of less than 5 microseconds and very high dependability is being designed. The design approach for this FPGA-based interlock system will be presented as well as the status on prototyping.  
poster icon Poster MOPGF138 [2.412 MB]  
TUC3O03 Development and Realisation of the ESS Machine Protection Concept 1
  • A. Nordt, R. Andersson, T. Korhonen, A. Monera Martinez, M. Zaera-Sanz
    ESS, Lund, Sweden
  • A. Apollonio, R. Schmidt
    CERN, Geneva, Switzerland
  • C. Hilbes
    ZHAW, Winterthur, Switzerland
  ESS is facing extremely high beam availability requirements and is largely relying on custom made, very specialised, and expensive equipment for its operation. The proton beam power with an average of 5MW per pulse will be unprecedented and its uncontrolled release can lead to serious damage of the delicate equipment, causing long shutdown periods, inducing high financial losses and, as a main point, interfering drastically with international scientific research programs relying on ESS operation. Implementing a fit-for-purpose machine protection concept is one of the key challenges in order to mitigate these risks. The development and realisation of the measures needed to implement such concept to the correct level in case of a complex facility like the ESS, requires a systematic approach, and will be discussed in this paper.  
slides icon Slides TUC3O03 [11.927 MB]  
FRB3O02 Status of the European Spallation Source Control System 1
  • T. Korhonen, R. Andersson, F. Bellorini, S.L. Birch, D.P. Brodrick, H. Carling, J. Cereijo García, R.N. Fernandes, L. Fernandez, B. Gallese, S.R. Gysin, E. Laface, N. Levchenko, M. Mansouri Sharifabad, R. Mudingay, A. Nordt, D. Paulic, D.P. Piso, K. Rathsman, M. Reščič, G. Trahern, M. Zaera-Sanz
    ESS, Lund, Sweden
  • N. Claesson, U. Rojec, K. Strniša, A.A. Söderqvist
    Cosylab, Ljubljana, Slovenia
  The European Spallation Source (ESS) is a collaboration of 17 European countries to build the world's most powerful neutron source for research. ESS has entered the construction phase and the plan is to produce first neutrons by 2019 and to complete the construction by 2025. The Integrated Control System Division (ICS) is responsible to provide control systems for the whole facility. The unprecented beam power of 5 MW and the construction of the facility with many components contributed in-kind presents a number of challenges to the control system. Systems have to be specified so that the work can be effectively shared between the contributors and on-site staff. Control system components need to provide a level of performance that can support the operation of the facility, be standardized so that integration to the facility can be done during a short installation period and be maintainable by the in-house staff after the construction has finished. This paper will outline the plans and principles that will be used to construct the control systems. The selected technologies and standards will be presented, as well as the plans for integration.