Author: Petrosyan, L.P.
Paper Title Page
MOA3O02 The Large Scale European XFEL Control System: Overview and Status of the Commissioning 1
  • R. Bacher, A. Aghababyan, P.K. Bartkiewicz, T. Boeckmann, B. Bruns, M.R. Clausen, T. Delfs, P. Duval, L. Fröhlich, W. Gerhardt, C. Gindler, J. Hatje, O. Hensler, J.M. Jäger, R. Kammering, S. Karstensen, H. Keller, V. Kocharyan, O. Korth, A. Labudda, T. Limberg, S.M. Meykopff, M. Möller, J. Penning, A. Petrosyan, G. Petrosyan, L.P. Petrosyan, V. Petrosyan, P. Pototzki, K.R. Rehlich, S. Rettig-Labusga, H.R. Rickens, G. Schlesselmann, B. Schoeneburg, E. Sombrowski, M. Staack, C. Stechmann, J. Szczesny, J. Wilgen, T. Wilksen, H. Wu
    DESY, Hamburg, Germany
  • S. Abeghyan, A. Beckmann, D. Boukhelef, N. Coppola, S.G. Esenov, B. Fernandes, P. Gessler, G. Giambartolomei, S. Hauf, B.C. Heisen, S. Karabekyan, M. Kumar, L.G. Maia, A. Parenti, A. Silenzi, H. Sotoudi Namin, J. Szuba, M. Teichmann, J. Tolkiehn, K. Weger, J. Wiggins, K. Wrona, M. Yakopov, C. Youngman
    XFEL. EU, Hamburg, Germany
  The European XFEL is a 3.4km long X-ray Free Electron Laser in the final construction and commissioning phase in Hamburg. It will produce 27000 bunches per second at 17.5GeV. Early 2015 a first electron beam was produced in the RF-photo-injector and the commissioning of consecutive sections is following during this and next year. The huge number and variety of devices for the accelerator, beam line, experiment, cryogenic and facility systems pose a challenging control task. Multiple systems, including industrial solutions, must be interfaced to each other. The high number of bunches requires a tight time synchronization (down to picoseconds) and high performance data acquisition systems. Fast feedbacks from front-ends, the DAQs and online analysis system with a seamless integration of controls are essential for the accelerator and the initially 6 experimental end stations. It turns out that the European XFEL will be the first installation exceeding 2500 FPGA components in the MicroTCA form factor and will run one of the largest PROFIBUS networks. Many subsystem prototypes are already successfully in operation. An overview and status of the XFEL control system will be given.  
slides icon Slides MOA3O02 [3.101 MB]  
WEPGF015 Drivers and Software for MicroTCA.4 1
  • M. Killenberg, M. Heuer, M. Hierholzer, L.P. Petrosyan, Ch. Schmidt, N. Shehzad, G. Varghese, M. Viti
    DESY, Hamburg, Germany
  • T. Kozak, P. Prędki, J. Wychowaniak
    TUL-DMCS, Łódź, Poland
  • S. Marsching
    Aquenos GmbH, Baden-Baden, Germany
  • M. Mehle, T. Sušnik, K. Žagar
    Cosylab, Ljubljana, Slovenia
  • A. Piotrowski
    FastLogic Sp. z o.o., Łódź, Poland
  Funding: This work is supported by the Helmholtz Validation Fund HVF-0016 'MTCA.4 for Industry'.
The MicroTCA.4 crate standard provides a powerful electronic platform for digital and analogue signal processing. Besides excellent hardware modularity, it is the software reliability and flexibility as well as the easy integration into existing software infrastructures that will drive the widespread adoption of the new standard. The DESY MicroTCA.4 User Tool Kit (MTCA4U) comprises three main components: A Linux device driver, a C++ API for accessing the MicroTCA.4 devices and a control system interface layer. The main focus of the tool kit is flexibility to enable fast development. The universal, expandable PCI Express driver and a register mapping library allow out of the box operation of all MicroTCA.4 devices which are running firmware developed with the DESY board support package. The tool kit has recently been extended with features like command line tools and language bindings to Python and Matlab.
poster icon Poster WEPGF015 [0.536 MB]