Author: Riggi, S.
Paper Title Page
MOA3O01 SKA Telescope Manager Project Status Report 1
 
  • L.R. Brederode
    SKA South Africa, National Research Foundation of South Africa, Cape Town, South Africa
  • A. Marassi
    INAF-OAT, Trieste, Italy
  • S. Riggi
    INAF-OACT, Catania, Italy
 
  Funding: SKA South Africa National Research Foundation of South Africa Department of Science and Technology 3rd Floor, The Park, Park Road Pinelands Cape Town South Africa 7405.
The Square Kilometre Array (SKA) will be the world's largest radio telescope once it is complete and will use hundreds of thousands of receivers, spanning Africa and Australia to survey the sky in unprecedented detail. The SKA will be ground breaking in many respects such as image resolution, sensitivity, survey speed, data processing and size to name a few. The SKA Telescope Manager Consortium is currently designing the SKA Phase 1 (SKA1) Telescope Manager Element that will orchestrate the SKA Observatory and associated telescopes. In this paper, we report on the current status of the SKA1 Telescope Manager pre-construction project, the development process and its high-level architecture.
 
slides icon Slides MOA3O01 [2.713 MB]  
 
MOPGF163 Status of the Local Monitor and Control System of SKA Dishes 1
 
  • S. Riggi, U. Becciani, A. Costa, A. Ingallinera, F. Schillirò, C. Trigilio
    INAF-OACT, Catania, Italy
  • V. Baldini, R. Cirami, A. Marassi
    INAF-OAT, Trieste, Italy
  • G. Nicotra, C. Nocita
    INAF IRA, Bologna, Italy
 
  The Square Kilometer Array (SKA) project aims at building the world's largest radio observatory to observe the radio sky with unprecedented sensitivity and collecting area. In the SKA1 phase of the project, two dish arrays are to be built, one in South Africa (SKA1-Mid) and the other in Western Australia (SKA1-Survey). Each antenna will be provided with a local monitor and control system, enabling remote operations to engineers and to the Telescope Manager system. In this paper we present the current status of the software system being designed to monitor and control the dish subsystem. An overview of the dish instrumentation is reported, along with details concerning the software architecture, functional interfaces, prototyping and the evaluated technologies.  
poster icon Poster MOPGF163 [1.181 MB]