Author: Teichmann, M.
Paper Title Page
MOA3O02 The Large Scale European XFEL Control System: Overview and Status of the Commissioning 1
  • R. Bacher, A. Aghababyan, P.K. Bartkiewicz, T. Boeckmann, B. Bruns, M.R. Clausen, T. Delfs, P. Duval, L. Fröhlich, W. Gerhardt, C. Gindler, J. Hatje, O. Hensler, J.M. Jäger, R. Kammering, S. Karstensen, H. Keller, V. Kocharyan, O. Korth, A. Labudda, T. Limberg, S.M. Meykopff, M. Möller, J. Penning, A. Petrosyan, G. Petrosyan, L.P. Petrosyan, V. Petrosyan, P. Pototzki, K.R. Rehlich, S. Rettig-Labusga, H.R. Rickens, G. Schlesselmann, B. Schoeneburg, E. Sombrowski, M. Staack, C. Stechmann, J. Szczesny, J. Wilgen, T. Wilksen, H. Wu
    DESY, Hamburg, Germany
  • S. Abeghyan, A. Beckmann, D. Boukhelef, N. Coppola, S.G. Esenov, B. Fernandes, P. Gessler, G. Giambartolomei, S. Hauf, B.C. Heisen, S. Karabekyan, M. Kumar, L.G. Maia, A. Parenti, A. Silenzi, H. Sotoudi Namin, J. Szuba, M. Teichmann, J. Tolkiehn, K. Weger, J. Wiggins, K. Wrona, M. Yakopov, C. Youngman
    XFEL. EU, Hamburg, Germany
  The European XFEL is a 3.4km long X-ray Free Electron Laser in the final construction and commissioning phase in Hamburg. It will produce 27000 bunches per second at 17.5GeV. Early 2015 a first electron beam was produced in the RF-photo-injector and the commissioning of consecutive sections is following during this and next year. The huge number and variety of devices for the accelerator, beam line, experiment, cryogenic and facility systems pose a challenging control task. Multiple systems, including industrial solutions, must be interfaced to each other. The high number of bunches requires a tight time synchronization (down to picoseconds) and high performance data acquisition systems. Fast feedbacks from front-ends, the DAQs and online analysis system with a seamless integration of controls are essential for the accelerator and the initially 6 experimental end stations. It turns out that the European XFEL will be the first installation exceeding 2500 FPGA components in the MicroTCA form factor and will run one of the largest PROFIBUS networks. Many subsystem prototypes are already successfully in operation. An overview and status of the XFEL control system will be given.  
slides icon Slides MOA3O02 [3.101 MB]  
WEPGF153 Karabo-GUI: A Multi-Purpose Graphical Front-End for the Karabo Framework 1
  • M. Teichmann, B.C. Heisen, K. Weger, J. Wiggins
    XFEL. EU, Hamburg, Germany
  The Karabo GUI is a generic graphical user interface (GUI) which is currently developed at the European XFEL GmbH. It allows the complete management of the Karabo distributed control and data acquisition system. Remote applications (devices) can be instantiated, operated and terminated. Devices are listed in a live navigation view and from the self-description inherent to every device a default configuration panel is generated. The user may combine interrelated components into one project. Such a project includes persisted device configurations, custom control panels and macros. Expert panels can be built by intermixing static graphical elements with dynamic widgets connected to parameters of the distributed system. The same panel can also be used to graphically configure and execute data analysis workflows. Other features include an embedded IPython scripting console, logging, notification and alarm handling. The GUI is user-centric and will restrict display or editing capability according to the user's role and the current device state. The GUI is based on PyQt technology and acts as a thin network client to a central Karabo GUI-Server.  
poster icon Poster WEPGF153 [0.764 MB]