Keyword: detector
Paper Title Other Keywords Page
MOPGF016 Improving the Compact Muon Solenoid Electromagnetic Calorimeter Control and Safety Systems for the Large Hadron Collider Run 2 hardware, controls, software, experiment 1
  • D.R.S. Di Calafiori, G. Dissertori, L. Djambazov, O. Holme, W. Lustermann
    ETH, Zurich, Switzerland
  • P. Adzic, P. Cirkovic, D. Jovanovic
    VINCA, Belgrade, Serbia
  • S. Zelepoukine
    UW-Madison/PD, Madison, Wisconsin, USA
  Funding: Swiss National Science Foundation (SNSF); Ministry of Education, Science and Technological Development of Serbia
The first long shutdown of the Large Hadron Collider (LS1, 2013-2015) provided an opportunity for significant upgrades of the detector control and safety systems of the CMS Electromagnetic Calorimeter. A thorough evaluation was undertaken, building upon experience acquired during several years of detector operations. Substantial improvements were made to the monitoring systems in order to extend readout ranges and provide improved monitoring precision and data reliability. Additional remotely controlled hardware devices and automatic software routines were implemented to optimize the detector recovery time in the case of failures. The safety system was prepared in order to guarantee full support for both commercial off-the-shelf and custom hardware components throughout the next accelerator running period. The software applications were modified to operate on redundant host servers, to fulfil new requirements of the experiment. User interface extensions were also added to provide a more complete overview of the control system. This paper summarises the motivation, implementation and validation of the major improvements made to the hardware and software components during the LS1 and the early data-taking period of LHC Run 2.
poster icon Poster MOPGF016 [2.392 MB]  
MOPGF020 Detector and Run Control Systems for the NA62 Fixed-Target Experiment at CERN controls, hardware, operation, experiment 1
  • P. Golonka, R. Fantechi, M. Gonzalez-Berges, F. Varela
    CERN, Geneva, Switzerland
  • V. Falaleev
    JINR, Dubna, Moscow Region, Russia
  • N. Lurkin
    Birmingham University, Birmingham, United Kingdom
  • R.F. Page
    University of Bristol, Bristol, United Kingdom
  The Detector and Run Control systems for the NA62 experiment, which started physics data-taking in Autumn of 2014, were designed, developed and deployed in collaboration between the Physics and Engineering Departments at CERN. Based on the commonly used control frameworks, UNICOS and JCOP, they were developed with scarce manpower while meeting the challenge of extreme agility, evolving requirements, as well as integration of new types of hardware. This paper presents, for the first time, the architecture of these systems and discusses the challenges and experience in developing and maintaining them during the first months of operation.  
poster icon Poster MOPGF020 [4.620 MB]  
MOPGF022 SIS18 Upgrade: The FAIR Compliant Renovation of the Data Acquisition System for Particle Detectors hardware, controls, operation, synchrotron 1
  • R. Haseitl, H. Bräuning, T. Hoffmann, K. Lang, T. Milosic
    GSI, Darmstadt, Germany
  In preparation of FAIR, several well-established beam instrumentation systems of the GSI heavy-ion synchrotron SIS18 and its connected high-energy beam transfer lines (HEBT) have to be modernized. In this contribution, the data acquisition upgrade of particle detectors such as ion chambers and plastic scintillators is described. This covers the replacement of an outdated custom-built readout- and control hardware by modern FMC (FPGA mezzanine card) based I/O hardware, new multi-channel high voltage power supplies and a new data acquisition system (DAQ) for the VME based scalers. The latter will replace the old Kylix-based ABLASS software by LASSIE (Large Analog Signal and Scaling Information Environment) to fit into the new FAIR control system concept. LASSIE is based on FESA (Front End Software Architecture). FESA was originally developed by CERN and enhanced by GSI-specific modifications. Furthermore, the new particle detector DAQ will be able to take full advantage of the new FAIR timing system which is based on the White Rabbit protocol.  
poster icon Poster MOPGF022 [1.194 MB]  
MOPGF026 Laser Beam Profiling and Further Improvements to the FHI FEL FEL, laser, electron, cavity 1
  • H. Junkes, W. Schöllkopf, M. Wesemann
    FHI, Berlin, Germany
  A mid-infrared FEL has been established at the Fritz-Haber-Institut in Berlin. It is used for spectroscopic investigations of molecules, clusters, nanoparticles and surfaces. The oscillator FEL is operated with 15 - 50 MeV electrons from a normal-conducting S-band linac equipped with a gridded thermionic gun and a chicane for controlled bunch compression. The EPICS software framework was choosen to build the control system for this facility. In an effort to support the various experimenters two different Laser Beam Profiling cameras have been integrated. Here, the areadetector framework with genicam integration is used. The control system was also expanded with fast digitizers (SIS3316) but connected via Ethernet instead of using a VMEbus crate controller to get a higher flexibility. A iPad app for monitoring completes the enhancement. This paper presents design and implementation aspects of the upgrade, its capabilities, and lessons learned during the development.  
poster icon Poster MOPGF026 [15.827 MB]  
MOPGF052 A Framework for Hardware Integration in the LHCb Experiment Control System hardware, interface, controls, experiment 1
  • L.G. Cardoso, F. Alessio, J. Barbosa, C. Gaspar, R. Schwemmer
    CERN, Geneva, Switzerland
  • P-Y. Duval
    CPPM, Marseille, France
  LHCb is one of the four experiments at the LHC accelerator at CERN. For the LHCb upgrade, hundreds of new electronics boards for the central data acquisition and for the front-end readout of the different sub-detectors are being developed. These devices will need to be integrated in the Experiment Control System (ECS) that drives LHCb. Typically, they are controlled via a server running on a PC which allows the communication between the hardware registers and the experiment SCADA (WinCC OA). A set of tools was developed that provide an easy integration of the control and monitoring of the devices in the ECS. The fwHw is a tool that allows the abstraction of the device models into the ECS. Using XML files describing the structure and registers of the devices it creates the necessary model of the hardware as a data structure in the SCADA. It allows then the control and monitoring of the defined registers using their name, without the need to know the details of the hardware behind. The fwHw tool also provides the facility of defining and applying recipes - named sets of configuration parameters which can be used to easily configure the hardware according to specific needs.  
poster icon Poster MOPGF052 [0.705 MB]  
MOPGF058 Neutron Scattering Instrument Control System Modernization - Front-End Hardware and Software Adaption Problems TANGO, device-server, controls, hardware 1
  • M. Drochner, L. Fleischhauer-Fuss, H. Kleines, M. Wagener, S. van Waasen
    FZJ, Jülich, Germany
  When the FRM-2 neutron source went into operation (2002) and many instruments were moved from the closed-down Jülich reactor to the new facility, it was agreed on a choice of front-end hardware and the TACO middleware from ESRF. To keep up with software standards, it was decided recently to switch to TACO's successor - the TANGO control software. For a unified "user experience", new graphical user interface software "NICOS-2" is being developed by the software group at FRM2. While general semantics of TACO and TANGO don't look very different at a first glance, and adaption of device servers seemed to be straightforward at first, various problems in practical operation were found. The problems were due to differences in state handling, timing behavior and error reporting. These problems, and the changes that had to be made to ensure reliable operation again, will be described.  
poster icon Poster MOPGF058 [4.001 MB]  
MOPGF063 The New TANGO-based Control and Data Acquisition of the Neutron Instrument DNS at FRM II TANGO, controls, neutron, software 1
  • H. Kleines, M. Bednarek, K. Bussmann, M. Drochner, L. Fleischhauer-Fuss, S. Janaschke, S. Keuler, K.-H. Mertens, S. Su, F. Suxdorf, S. van Waasen
    FZJ, Jülich, Germany
  Forschungszentrum Jülich has been operating the neutron Instrument DNS at the neutron source FRM II for about 10 years. DNS is a time of flight neutron spectrometer with polarization analysis that experienced a major upgrade in 2014 and 2015. During the upgrade DNS was equipped with new electronics and a new control and data acquisition system, including a transition from the existing TACO system to its successor TANGO. On the client side the NICOS software developed at FRM II is used for the implementation of measurement operations and user interface. The design of the new control and data acquisition system is presented and the lessons learned by the introduction of TANGO are reported.  
MOPGF070 Report on Control/DAQ Software Design and Current State of Implementation for the Percival Detector. controls, software, Linux, EPICS 1
  • A.S. Palaha, C. Angelsen, Q. Gu, J. Marchal, U.K. Pedersen, N.P. Rees, N. Tartoni, H. Yousef
    DLS, Oxfordshire, United Kingdom
  • M. Bayer, J. Correa, P. Gnadt, H. Graafsma, P. Göttlicher, S. Lange, A. Marras, S. Řeža, I. Shevyakov, S. Smoljanin, L. Stebel, C. Wunderer, Q. Xia, M. Zimmer
    DESY, Hamburg, Germany
  • G. Cautero, D. Giuressi, A. Khromova, R.H. Menk, G. Pinaroli
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • D. Das, N. Guerrini, B. Marsh, T.C. Nicholls, I. Sedgwick, R. Turchetta
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • H.J. Hyun, K.S. Kim, S.Y. Rah
    PAL, Pohang, Republic of Korea
  The increased brilliance of state-of-the-art Synchrotron radiation sources and Free Electron Lasers require imaging detectors capable of taking advantage of these light source facilities. The PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile and Large") detector is being developed in collaboration between DESY, Elettra Sincrotrone Trieste, Diamond Light Source and Pohang Accelerator Laboratory. It is a CMOS detector targeting soft X-rays < 1 KeV, with a high resolution of up to 13 M pixels reading out at 120 Hz, producing a challenging data rate of 6 GB/s. The controls and data acquisition system will include a SDK to allow integration with third party control systems like Tango and DOOCS; an EPICS areaDetector driver will be included by default. It will make use of parallel readout to keep pace with the data rate, distributing the data over multiple nodes to create a single virtual dataset using the HDF5 file format for its speed advantages in high volumes of regular data. This paper presents the design of the control system software for the Percival detector, an update of the current state of the implementation carried out by Diamond Light Source.  
poster icon Poster MOPGF070 [0.359 MB]  
MOPGF093 Real-time Beam Loading Compensation for Single SRF Cavity LLRF Regulation LLRF, real-time, cavity, electron 1
  • I. Rutkowski, M. Grzegrzólka
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • Ł. Butkowski, Ch. Schmidt
    DESY, Hamburg, Germany
  • M. Kuntzsch
    HZDR, Dresden, Germany
  Stable and reproducible generation of a photon beam at Free Electron Lasers (FELs) necessitates a low energy spread of the electron beam. A low level radio frequency (LLRF) control system stabilizes the RF field inside accelerating modules. An electron beam passing through the cavity induces a drop in the actual stored field proportional to the charge, the cavity shunt impedance, and the bunch repetition rate. The feedback loop compensates for the perturbation after the accelerating gradient drops. Due to the digital loop delay and limited bandwidth of the closed loop system, this disturbance induces control errors which can increase beam energy spread. An open-loop controller uses information obtained from the beam diagnostic systems accounting in real-time for fluctuations of the beam current. This paper describes the bunch charge detection scheme, its implementation, as well as results of the tests performed on the ELBE (Electron Linac for beams with high Brilliance and low Emittance) radiation source at the HZDR (Helmholtz-Zentrum Dresden-Rossendorf) facility.  
poster icon Poster MOPGF093 [4.046 MB]  
MOPGF137 Interlock of Beam Loss at Low Energy Part of J-PARC Linac DTL, operation, linac, rfq 1
  • A. Miura, Y. Kawane, N. Kikuzawa, T. Maruta
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Miyao
    KEK, Ibaraki, Japan
  J-Parc linac has developed the output beam power by increasing of acceleration energy and the peak beam current. The beam loss is getting serious along with increasing the output beam power, however, the beam loss caused at the low energy part is difficult to detect due to the low energy radioactive emission. An interlock system has been developed to prevent from the sufficient material activation using the beam current monitors. In the system, an electrical circuit to take the beam transmission between two beam current monitors is newly designed and fabricated. This paper describes the performance of the electrical circuit and the system configuration will be introduced.  
MOPGF142 Development of a Network-based Personal Dosimetry System, KURAMA-micro radiation, network, monitoring, operation 1
  • M. Tanigaki
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • Y. Nakanishi
    Shikoku Research Institute Inc., Kagawa, Japan
  As the recovery from the nuclear accident in Fukushima progresses, strong demands arise on the continuous monitoring of individual radiation exposure based on action histories in a large group, such as the residents returning to their hometown after decontamination, or the workers involved in the decomissioning of the Fukushima Daiichi nuclear power plant. KURAMA-micro, a personal dosimetry system with network and positioning capability, is developed for such purpose. KURAMA-micro consists of a semiconductor dosimeter and a DAQ board based on OpenATOMS. Each unit records radiation data tagged with their measurement time and locations, and uploads the data to the server over a ZigBee-based network once each unit comes near one of the access points prepared expected activities range of users. Location data are basically obtained by a GPS unit, and an additional radio beacon scheme using ZigBee broadcast protocol is also used for the indoor positioning. The development of a proto-type KURAMA-micro is finished and a field test for the workers of a nuclear reactor under normal operation is planned in the spring of 2015.  
MOPGF164 Status of the EPICS-Based Control and Interlock System of the Belle II PXD controls, EPICS, database, power-supply 1
  • M. Ritzert
    Heidelberg University, Heidelberg, Germany
  Funding: This work has been supported by the German Federal Ministry of Education and Research (BMBF) under Grant Identifier 05H12VHH.
The Belle II e+/e collider experiment at KEK will include a new pixelated detector (PXD) based on DEPFET technology as the innermost layer. This detector requires a complex control and readout infrastructure consisting of several ASICs and FPGA boards. This paper present the architecture and EPICS-based implementation of the control, alarm, and interlock systems, their interface to the various subsystems, and to the NSM2-based Belle II run-control. The complex startup sequence is orchestrated by a statemachine. CSS is used to implement the user interface. The alarm system uses CSS/BEAST, and is designed to minimize spurious alarms. The interlock system consists of two main parts: a hardware-based system that triggers on adverse environmental (temperature, humidity, radiation) conditions, and a software-based system. Strict monitoring including the use of heartbeats ensures permanent protection and fast reaction times. Especially the power supply system is monitored for malfunctions, and all user inputs are verified before they are sent to the hardware. The control system also incorporates archiving, logging, and reporting in a uniform workflow for the ease of daily operation.
For the DEPFET Collaboration.
poster icon Poster MOPGF164 [6.742 MB]  
TUA3O01 Detector Controls Meets JEE on the Web controls, interface, distributed, experiment 1
  • F. Glege, A. Andronidis, O. Chaze, C. Deldicque, M. Dobson, A.D. Dupont, D. Gigi, J. Hegeman, O. Holme, M. Janulis, R.J. Jiménez Estupiñán, L. Masetti, F. Meijers, E. Meschi, S. Morovic, C. Nunez-Barranco-Fernandez, L. Orsini, A. Petrucci, A. Racz, P. Roberts, H. Sakulin, C. Schwick, B. Stieger, S. Zaza, P. Zejdl
    CERN, Geneva, Switzerland
  • J.M. Andre, R.K. Mommsen, V. O'Dell
    Fermilab, Batavia, Illinois, USA
  • U. Behrens
    DESY, Hamburg, Germany
  • J. Branson, S. Cittolin, A. Holzner, M. Pieri
    UCSD, La Jolla, California, USA
  • G.L. Darlea, G. Gomez-Ceballos, C. Paus, J. Veverka
    MIT, Cambridge, Massachusetts, USA
  • S. Erhan
    UCLA, Los Angeles, California, USA
  Remote monitoring and controls has always been an important aspect of physics detector controls since it was available. Due to the complexity of the systems, the 24/7 running requirements and limited human resources, remote access to perform interventions is essential. The amount of data to visualize, the required visualization types and cybersecurity standards demand a professional, complete solution. Using the example of the integration of the CMS detector controls system into our ORACLE WebCenter infrastructure, the mechanisms and tools available for integration with controls systems shall be discussed. Authentication has been delegated to WebCenter and authorization been shared between web server and control system. Session handling exists in either system and has to be matched. Concurrent access by multiple users has to be handled. The underlying JEE infrastructure is specialized in visualization and information sharing. On the other hand, the structure of a JEE system resembles a distributed controls system. Therefore an outlook shall be given on tasks which could be covered by the web servers rather than the controls system.  
slides icon Slides TUA3O01 [2.606 MB]  
WEA3O02 Recent Advancements and Deployments of EPICS Version 4 EPICS, controls, experiment, database 1
  • G.R. White, M.V. Shankar
    SLAC, Menlo Park, California, USA
  • A. Arkilic, L.R. Dalesio, M.A. Davidsaver, M.R. Kraimer, N. Malitsky, B.S. Martins
    BNL, Upton, Long Island, New York, USA
  • S.M. Hartman, K.-U. Kasemir
    ORNL, Oak Ridge, Tennessee, USA
  • D.G. Hickin
    DLS, Oxfordshire, United Kingdom
  • A.N. Johnson, S. Veseli
    ANL, Argonne, Ilinois, USA
  • T. Korhonen
    ESS, Lund, Sweden
  • R. Lange
    ITER Organization, St. Paul lez Durance, France
  • M. Sekoranja
    Cosylab, Ljubljana, Slovenia
  • G. Shen
    FRIB, East Lansing, Michigan, USA
  EPICS version 4 is a set of software modules that add to the base of the EPICS toolkit for advanced control systems. Version 4 adds the possibility of process variable values of structured data, an introspection interface for dynamic typing plus some standard types, high-performance streaming, and a new front-end processing database for managing complex data I/O. A synchronous RPC-style facility has also been added so that the EPICS environment supports service-oriented architecture. We introduce EPICS and the new features of version 4. Then we describe selected deployments, particularly for high-throughput experiment data transport, experiment data management, beam dynamics and infrastructure data.  
slides icon Slides WEA3O02 [2.409 MB]  
WEB3O03 Disruptor - Using High Performance, Low Latency Technology in the CERN Control System controls, framework, software, hardware 1
  • M. Gabriel, R. Gorbonosov
    CERN, Geneva, Switzerland
  Accelerator control systems process thousands of concurrent events per second, which adds complexity to their implementation. The Disruptor library provides an innovative single-threaded approach, which combines high performance event processing with a simplified software design, implementation and maintenance. This open-source library was originally developed by a financial company to build a low latency trading exchange. In 2014 the high-level control system for CERN experimental areas (CESAR) was renovated. CESAR calculates the states of thousands of devices by processing more than 2500 asynchronous event streams. The Disruptor was used as an event-processing engine. This allowed the code to be greatly simplified by removing the concurrency concerns. This paper discusses the benefits of the programming model encouraged by the Disruptor (simplification of the code base, performance, determinism), the design challenges faced while integrating the Disruptor into CESAR as well as the limitations it implies on the architecture.  
slides icon Slides WEB3O03 [0.950 MB]  
WED3O02 Databroker: An Interface for NSLS-II Data Management System experiment, interface, framework, data-management 1
  • A. Arkilic, D.B. Allan, D. Chabot, L.R. Dalesio, W.K. Lewis
    BNL, Upton, Long Island, New York, USA
  Funding: Brookhaven National Lab, U.S. Department of Energy
A typical experiment involves not only the raw data from a detector, but also requires additional data from the beamline. This information is largely kept separated and manipulated individually, to date. A much more effective approach is to integrate these different data sources, and make these easily accessible to data analysis clients. NSLS-II data flow system contains multiple backends with varying data types. Leveraging the features of these (metadatastore, filestore, channel archiver, and Olog), this library provides users with the ability to access experimental data. This service acts as a single interface for time series, data attribute, frame data access and other experiment related information.
slides icon Slides WED3O02 [2.940 MB]  
WEPGF013 Increasing Availability by Implementing Software Redundancy in the CMS Detector Control System controls, software, hardware, status 1
  • L. Masetti, A. Andronidis, O. Chaze, C. Deldicque, M. Dobson, A.D. Dupont, D. Gigi, F. Glege, J. Hegeman, M. Janulis, R.J. Jiménez Estupiñán, F. Meijers, E. Meschi, S. Morovic, C. Nunez-Barranco-Fernandez, L. Orsini, A. Petrucci, A. Racz, P. Roberts, H. Sakulin, C. Schwick, B. Stieger, S. Zaza, P. Zejdl
    CERN, Geneva, Switzerland
  • J.M. Andre, R.K. Mommsen, V. O'Dell, P. Zejdl
    Fermilab, Batavia, Illinois, USA
  • U. Behrens
    DESY, Hamburg, Germany
  • J. Branson, S. Cittolin, A. Holzner, M. Pieri
    UCSD, La Jolla, California, USA
  • G.L. Darlea, G. Gomez-Ceballos, C. Paus, K. Sumorok, J. Veverka
    MIT, Cambridge, Massachusetts, USA
  • S. Erhan
    UCLA, Los Angeles, California, USA
  • O. Holme
    ETH, Zurich, Switzerland
  Funding: Swiss National Science Foundation (SNSF).
The Detector Control System (DCS) of the Compact Muon Solenoid (CMS) experiment ran with high availability throughout the first physics data-taking period of the Large Hadron Collider (LHC). This was achieved through the consistent improvement of the control software and the provision of a 24-hour expert on-call service. One remaining potential cause of significant downtime was the failure of the computers hosting the DCS software. To minimize the impact of these failures after the restart of the LHC in 2015, it was decided to implement a redundant software layer for the control system where two computers host each DCS application. By customizing and extending the redundancy concept offered by WinCC Open Architecture (WinCC OA), the CMS DCS can now run in a fully redundant software configuration. The implementation involves one host being active, handling all monitoring and control tasks, with the second host running in a minimally functional, passive configuration. Data from the active host is constantly copied to the passive host to enable a rapid switchover as needed. This paper describes details of the implementation and practical experience of redundancy in the CMS DCS.
poster icon Poster WEPGF013 [1.725 MB]  
WEPGF018 Service Asset and Configuration Management in ALICE Detector Control System controls, software, database, hardware 1
  • M. Lechman, A. Augustinus, P.M. Bond, P.Ch. Chochula, A.N. Kurepin, O. Pinazza
    CERN, Geneva, Switzerland
  • A.N. Kurepin
    RAS/INR, Moscow, Russia
  • M. Lechman
    IP SAS, Bratislava, Slovak Republic
  • O. Pinazza
    INFN-Bologna, Bologna, Italy
  ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) detectors at CERN. It is composed of 19 sub-detectors constructed by different institutes participating in the project. Each of these subsystems has a dedicated control system based on the commercial SCADA package "WinCC Open Architecture" and numerous other software and hardware components delivered by external vendors. The task of the central controls coordination team is to supervise integration, to provide shared services (e.g. database, gas monitoring, safety systems) and to manage the complex infrastructure (including over 1200 network devices and 270 VME and power supply crates) that is used by over 100 developers around the world. Due to the scale of the control system, it is essential to ensure that reliable and accurate information about all the components - required to deliver these services along with relationship between the assets - is properly stored and controlled. In this paper we will present the techniques and tools that were implemented to achieve this goal, together with experience gained from their use and plans for their improvement.  
poster icon Poster WEPGF018 [11.373 MB]  
WEPGF050 Integrated Detector Control and Calibration Processing at the European XFEL controls, framework, photon, GUI 1
  • A. Münnich, S. Hauf, B.C. Heisen, F. Januschek, M. Kuster, P.M. Lang, N. Raab, T. Rüter, J. Sztuk, M. Turcato
    XFEL. EU, Hamburg, Germany
  The European X-ray Free Electron Laser is a high-intensity X-ray light source currently being constructed in the area of Hamburg, that will provide spatially coherent X-rays in the energy range between 0.25 keV and 25 keV. The machine will deliver 10 trains/s, consisting of up to 2700 pulses, with a 4.5 MHz repetition rate. The LPD, DSSC and AGIPD detectors are being developed to provide high dynamic-range Mpixel imaging capabilities at the mentioned repetition rates. A consequence of these detector characteristics is that they generate raw data volumes of up to 15 Gbyte/s. In addition the detector's on-sensor memory-cell and multi-/non-linear gain architectures pose unique challenges in data correction and calibration, requiring online access to operating conditions and control settings. We present how these challenges are addressed within XFEL's control and analysis framework Karabo, which integrates access to hardware conditions, acquisition settings (also using macros) and distributed computing. Implementation of control and calibration software is mainly in Python, using self-optimizing (py) CUDA code, numpy and iPython parallels to achieve near-real time performance for calibration application.  
poster icon Poster WEPGF050 [3.425 MB]  
WEPGF053 Monitoring and Cataloguing the Progress of Synchrotron Experiments, Data Reduction, and Data Analysis at Diamond Light Source From a User's Perspective experiment, data-analysis, software, interface 1
  • J. Aishima
    SLSA, Clayton, Australia
  • A. Ashton, S. Fisher, K. Levik, G. Winter
    DLS, Oxfordshire, United Kingdom
  The high data rates produced by the latest generation of detectors, more efficient sample handling hardware and ever more remote users of the beamlines at Diamond Light Source require improved data reduction and data analysis techniques to maximize their benefit to scientists. In this paper some of the experiment data reduction and analysis steps are described, including real time image analysis with DIALS, our Fast DP and xia2-based data reduction pipelines, and Fast EP phasing and Dimple difference map calculation pipelines that aim to rapidly provide feedback about the recently completed experiment. SynchWeb, an interface to an open source laboratory information management system called ISPyB (co-developed at Diamond and the ESRF), provides a modern, flexible framework for managing samples and visualizing the data from all of these experiments and analyses, including plots, images, and tables of the analysed and reduced data, as well as showing experimental metadata, sample information.  
WEPGF056 Flyscan: a Fast and Multi-technique Data Acquisition Platform for the SOLEIL Beamlines TANGO, synchrotron, hardware, network 1
  • N. Leclercq, J. Bisou, F. Blache, F. Langlois, S. Lê, K. Medjoubi, C. Mocuta, S. Poirier
    SOLEIL, Gif-sur-Yvette, France
  SOLEIL is continuously optimizing its 29 beamlines in order to provide its users with state of the art synchrotron radiation based experimental techniques. Among the topics addressed by the related transversal projects, the enhancement of the computing tools is identified as a high priority task. In this area, the aim is to optimize the beam time usage providing the users with a fast, simultaneous and multi-technique scanning platform. The concrete implementation of this general concept allows the users to acquire more data in the same amount of beam time. The present paper provides the reader with an overview of so call 'Flyscan' project currently under deployment at SOLEIL. It notably details a solution in which an unbounded number of distributed actuators and sensors share a common trigger clock and deliver their data into temporary files. The latter are immediately merged into common file(s) in order to make the whole experiment data available for on-line processing and visualization. Some application examples are also commented in order to illustrate the advantages of the Flyscan approach.  
poster icon Poster WEPGF056 [2.335 MB]  
WEPGF063 Developing HDF5 for the Synchrotron Community synchrotron, software, operation, experiment 1
  • N.P. Rees
    DLS, Oxfordshire, United Kingdom
  • H.R. Billich
    PSI, Villigen PSI, Switzerland
  • A. Götz
    ESRF, Grenoble, France
  • Q. Koziol, E. Pourmal
    The HDF Group, Champaign, Illinois, USA
  • M. Rissi
    DECTRIS Ltd., Baden, Switzerland
  • E. Wintersberger
    DESY, Hamburg, Germany
  HDF5 and NeXus (which normally uses HDF5 as its underlying format) have been widely touted as a standard for storing Photon and Neutron data. They offer many advantages to other common formats and are widely used at many facilities. However, it has been found that the existing implementations of these standards have limited the performance of some recent detector systems. This paper describes how the synchrotron light source community has worked closely with The HDF Group to drive changes to the HDF5 software to make it more suitable for their environment. This includes developments managed by a detector manufacturer (Dectris - for direct chunk writes) as well as synchrotrons (DESY, ESRF and Diamond - for pluggable filters, Single Writer/Multiple Reader and Virtual Data Sets).  
poster icon Poster WEPGF063 [0.718 MB]  
WEPGF083 Single Neutron Counting Using CCD and CMOS Cameras neutron, electron, simulation, background 1
  • P. Mutti, M. Plaz, E. Ruiz-Martinez, P. Van Esch
    ILL, Grenoble, France
  • M. Crisanti
    Università degli di Perugia, Perugia, Italy
  Neutron detection traditionally takes place with detectors based upon particle detection technologies like gas or scintillation detections. These detectors have a high dynamic range, and are very performing at low counting rates and fast timing (time of flight) applications. At high counting rates however, continuous imaging detectors such as CCD or CMOS camera's optically linked to scintillators, can have very good performances concerning linearity and spatial resolution but the dynamic range of these systems is limited by noise and gamma background. We explore a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher rates. Neutron detection involves reactions releasing energies of the order of the MeV, while X-ray detection releases energies of the order of the photon energy, (10 KeV range). This 100-fold higher energy allows the individual neutron detection light signal to be significantly above the noise level, as such allowing for discrimination and individual counting. The theory is next confronted with experimental measurements on CCD and CMOS type commercial cameras.  
poster icon Poster WEPGF083 [7.975 MB]  
WEPGF084 New Digitisers for Position Sensitive 3He Proportional Counters neutron, electronics, FPGA, ion 1
  • P. Mutti, M. Plaz, E. Ruiz-Martinez, P. Van Esch
    ILL, Grenoble, France
  3He gas-filled detectors are a classical choice for the detection of thermal and cold neutrons. The incident neutrons are captured by the 3He producing a tritium and an hydrogen which are sharing the 765 keV of energy generated in the reaction. The classical geometry of a charge-division neutron detector consists of a cylindrical volume housing a resistive anode. Electrical signals are extracted at both ends of the tube and the information about the interaction point along the tube can be derived from the ratio of the collected charged at both ends. The classical analog approach for the charge readout consists of a shaping amplifier coupled with a peak sensing ADC. The development of a new digital front-end electronics based on 64 channels, 62.5 Msample/s and 12 bit digitisers, is reported on. Excellent results have been obtained in terms of position resolution and signal to noise ratio when adopting a continuous digital filtering and gaussian shaping.  
poster icon Poster WEPGF084 [8.285 MB]  
WEPGF105 EPICS V4 Evaluation for SNS Neutron Data neutron, EPICS, network, data-acquisition 1
  • K.-U. Kasemir, G.S. Guyotte, M.R. Pearson
    ORNL, Oak Ridge, Tennessee, USA
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Version 4 of the Experimental Physics and Industrial Control System (EPICS) toolkit allows defining application-specific structured data types (pvData) and offers a network protocol for their efficient exchange (pvAccess). We evaluated V4 for the transport of neutron events from the detectors of the Spallation Neutron Source (SNS) to data acquisition and experiment monitoring systems. This includes the comparison of possible data structures, performance tests, and experience using V4 in production on a beam line.
poster icon Poster WEPGF105 [1.277 MB]  
WEPGF126 Prototype of White Rabbit Network in LHAASO network, timing, controls, experiment 1
  • H. Li, G.H. Gong
    Tsinghua University, Beijing, People's Republic of China
  • Q. Du
    LBNL, Berkeley, California, USA
  Funding: Key Laboratory of Particle & Radiation Imaging, Open Research Foundation of State Key Lab of Digital Manufacturing Equipment & Technology in Huazhong Univ. of Science & Technology
Synchronization is a crucial concern in distributed measurement and control systems. White Rabbit provides sub-nanosecond accuracy and picoseconds precision for large distributed systems. In the Large High Altitude Air Shower Observatory project, to guarantee the angular resolution of reconstructed air shower event, a 500 ps overall synchronization precision must be achieved among thousands of detectors. A small prototype built at Yangbajin, Tibet, China has been working well for a whole year. A portable calibration node directly synced with the grandmaster switch and a simple detectors stack named Telescope are used to verify the overall synchronization precision of the whole prototype. The preliminary experiment results show that the long term synchronization of the White-Rabbit network is promising and 500 ps overall synchronization precision is achievable with node by node calibration and temperature correction.
poster icon Poster WEPGF126 [1.228 MB]  
WEPGF136 Development of iBeacon Based Equipment Inventory System at STAR Experiment experiment, hardware, site, toolkit 1
  • J. Fujita, M.G. Cherney
    Creighton University, Omaha, NE, USA
  An inventory system using iBeacon technology has been developed. Using a specially written iOS app, makes the location of the equipment easier to a workers during the routine access to the experiment. The use of iBeacons and iOS devices allow us to distinguish one equipment rack from another very easily. Combined with 2D barcode, the use of iBeacons may provide better inventory management of the equipment for experiments.  
poster icon Poster WEPGF136 [2.594 MB]  
WEPGF147 ALICE Monitoring in 3-D controls, experiment, software, monitoring 1
  • O. Pinazza
    INFN-Bologna, Bologna, Italy
  • A. Augustinus, P.M. Bond, P.Ch. Chochula, M. Lechman, J. Niedziela
    CERN, Geneva, Switzerland
  • A.N. Kurepin
    RAS/INR, Moscow, Russia
  The ALICE experiment is a complex hardware and software device, monitored and operated with a control system based on WinCC OA. ALICE is composed of 19 detectors and installed in a cavern along the LHC at CERN; each detector is a set of modular elements, assembled in a hierarchical model called Finite State Machine. A 3-D model of the ALICE detector has been realized, where all elements of the FSM are represented in their relative location, giving an immediate overview of the status of the detector. For its simplicity, it can be a useful tool for the training of operators. The development is done using WinCC OA integrated with the JCOP fw3DViewer, based on the AliRoot geometry settings. Extraction and conversion of geometry data from AliRoot requires the usage of conversion libraries, which are currently being implemented. A preliminary version of ALICE 3-D is now deployed on the operator panel in the ALICE Run Control Centre. In the next future, the 3-D panel will be available on a big touch screen in the ALICE Visits Centre, providing visitors with the unique experience of navigating the experiment from both inside and out.  
poster icon Poster WEPGF147 [1.272 MB]  
THHA3O01 The Evolution of the ALICE Detector Control System operation, controls, experiment, electronics 1
  • P.Ch. Chochula, A. Augustinus, P.M. Bond, A.N. Kurepin, M. Lechman, O. Pinazza
    CERN, Geneva, Switzerland
  • A.N. Kurepin
    RAS/INR, Moscow, Russia
  • O. Pinazza
    INFN-Bologna, Bologna, Italy
  The ALICE Detector Control System has provided its service since 2007. Its operation in the past years proved that the initial design of the system fulfilled all expectations and allowed the evolution of the detectors and operational requirements to follow. In order to minimize the impact of the human factor, many procedures have been optimized and new tools have been introduced in order to allow the operator to supervise about 1 000 000 parameters from a single console. In parallel with the preparation for new runs after the LHC shutdown a prototyping for system extensions which shall be ready in 2018 has started. New detectors will require new approaches to their control and configuration. The conditions data, currently collected after each run, will be provided continuously to a farm containing 100 000 CPU cores and tens of PB of storage. In this paper the DCS design, deployed technologies, and experience gained during the 7 years of operation will be described and the initial assumptions with the current setup will be compared. The current status of the developments for the upgraded system, which will be put into operation in less than 3 years from now, will also be described.  
slides icon Slides THHA3O01 [4.551 MB]  
THHB2O03 The Global Trigger with Online Vertex Fitting for Low Energy Neutrino Research experiment, electronics, simulation, photon 1
  • G.H. Gong, H. Li, T. Xue
    Tsinghua University, Beijing, People's Republic of China
  • H. Gong
    TUB, Beijing, People's Republic of China
  Neutrino research is of great importance for particle physics, astrophysics and cosmology, the JUNO (Jiangmen Underground Neutrino Observatory) is a multi-purpose neutrino experiment for neutrino mass ordering determination and precision measurement of neutrino mixing parameters. A brand new global trigger scheme with online vertex fitting has been proposed, aiming at the ultra-low anti-neutrino energy threshold as down to 0.1MeV which is essential for the study of solar neutrino and elastic scattering of neutrinos on supernova burst. With this scheme, the TOF (time of flight) difference of photons fly through the liquid media from the interaction point to the surface of central detector can be corrected online with real time, the width of trigger window to cover the whole period of a specific neutrino generated photons can be significantly reduced which lessen the integrated dark noise introduced from the large amount of PMT devices hence a lower energy threshold can be achieved. The scheme is compatible, flexible and easy to implement, it can effectively extend the physics potential of the JUNO for low energy neutrino research topics.  
slides icon Slides THHB2O03 [4.252 MB]  
THHB3O01 Mapping Developments at Diamond EPICS, software, interface, controls 1
  • R.D. Walton, A. Ashton, M. Basham, P. C. Y. Chang, T.M. Cobb, A.J. Dent, J. Filik, M.W. Gerring, C. Mita, C.M. Palmer, U.K. Pedersen, P.D. Quinn, N.P. Rees, S. da Graca
    DLS, Oxfordshire, United Kingdom
  Many synchrotron beamlines offer some form of continuous scanning for either energy scanning or sample mapping. However, this is normally done on an ad-hoc beamline by beamline basis. Diamond has recently embarked on an ambitious project to define how to implement continuous scanning as the standard way of doing virtually all mapping tasks on beamlines. The project is split into four main areas: 1) User interfaces to describe the mapping process in a scientifically relevant way, generating a scan description that can be used later; 2) The physical process of scanning and coordinating hardware motion and detector data capture across the beamline; 3) Capture of the detector data and all the associated meta-data to disk. Deciding and describing the layout of the file (or files) for the main use cases; 4) Display and analysis of live data and display of processed data. In order to achieve this common approach across beamlines, the standard software used throughout the facility (Delta Tau motor controllers, EPICS, GDA and DAWN), has been built on.  
slides icon Slides THHB3O01 [1.922 MB]