Keyword: emittance
Paper Title Other Keywords Page
MOPGF015 Fast Wire Scanner Upgrade for LCLS controls, interface, real-time, EPICS 1
  • J.M. D'Ewart, M.L. Campell, P. Krejcik, H. Loos, K. Luchini
    SLAC, Menlo Park, California, USA
  Wire scanners are a main diagnostic tool for transverse beam size and emittance measurements at LCLS. The original SLAC wire scanners were not optimized for speed (taking minutes to scan), and can't perform at the desired level of position resolution necessary for measuring LCLS' small beam size. A new fast wire scanner, based on a dc linear servo motor, has been designed and installed in the LCLS. The new fast wire scanner has several advantages over the original wire scanner: scan times are reduced from minutes to seconds while minimizing wire vibrations. Rather than counting open-loop step pulses, the new fast wire scanner uses real time position capture for beam synchronous sampling of the wire position, enhancing beam profile accuracy.  
MOPGF092 Integration of the TRACK Beam Dynamics Model to Decrease LINAC Tuning Times simulation, controls, database, real-time 1
  • C.E. Peters, C. Dickerson, F. Garcia, M.A. Power
    ANL, Argonne, Illinois, USA
  Funding: This work is supported by the U.S. DOE, Office of Nuclear Physics, contract No. DE-AC02-06CH11357.  This research used resources of ANLs ATLAS facility, which is a DOE Office of Science User Facility
The Accelerator R&D Group within the Argonne National Laboratory (ANL) Physics Division maintains a beam dynamics model named TRACK. This simulation code has the potential to assist operators in visualizing key performance parameters of the Argonne Tandem Linear Accelerating System (ATLAS). By having real-time access to visual and animated models of the particle beam transverse and longitudinal phase spaces, operators can more quickly iterate to a final machine tune. However, this effort requires a seamless integration into the control system, both to extract initial run-time information from the accelerator, and to present the simulation results back to the users. This paper presents efforts to pre-process, batch execute, and visualize TRACK particle beam physics simulations in real-time via the ATLAS Control System.
poster icon Poster MOPGF092 [2.199 MB]