Keyword: EPICS
Paper Title Other Keywords Page
MOB3O04 The Construction Status of the SuperKEKB Control System controls, timing, operation, interface 1
  • M. Iwasaki, A. Akiyama, K. Furukawa, H. Kaji, T. Naito, T.T. Nakamura, J.-I. Odagiri, S. Sasaki
    KEK, Ibaraki, Japan
  • T. Aoyama, M. Fujita, T. Nakamura, K. Yoshii
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • K. Asano, M. Hirose
    KIS, Ibaraki, Japan
  • Y. Iitsuka, N. Yoshifuji
    EJIT, Hitachi, Ibaraki, Japan
  SuperKEKB is the upgrade of KEKB, the asymmetric energy electron-positron collider for the B-factory experiment in Japan. It aims at the 40-times higher luminosity than the world record by KEKB. The KEKB control system has been built based on EPICS at the equipment layer and scripting languages at the operation layer. The SuperKEKB control system continues to employ these frameworks while we implement new features for the successful operation at such a high luminosity. As the commissioning of the SuperKEKB main storage rings is scheduled to start in 2016, the construction of the control system is now in the final phase. We have upgraded and reinforced the network system, server computers and operator consoles. Most of the VME-based IOCs (I/O Controllers), which has been widely used in KEKB, are upgraded while the PLC-based IOCs are also widely introduced. The new timing system has been developed in order to handle the complicated injection scheme of the SuperKEKB accelerator complex efficiently. The new beam abort trigger system and the new beam gate control system have been developed, and so on. The construction status of the SuperKEKB accelerator control system will be presented.  
slides icon Slides MOB3O04 [11.615 MB]  
MOM309 Upgrade of the Beam Monitor System for Hadron Experimental Facility at J-PARC extraction, PLC, hadron, operation 1
  • Y. Morino, K. Agari, Y. Sato, A. Toyoda
    KEK, Tokai, Ibaraki, Japan
  Hadron experimental facility(HD hall) at Japan Proton Accelerator Research Complex (J-PARC) is designed to provide high intensity beam for particle and nuclear physics. Slow-extracted proton beam(2 second spill per 6 seconds) from main ring is injected to a production target at the HD hall. On May 2013, proton beam was instantaneously extracted to the HD hall in 5 milliseconds. The short pulse beam melted the production target. After the accident, the beam operation was stopped at the HD hall. For the recovery of the HD hall, we upgraded the beam line of the HD hall in many aspects to sustain the abnormal beam injection. The monitor system of the beam line was also upgraded to detect the abnormal beam injection. The rate monitor of second particles from the target was prepared to detect short pulse injection. The beam profile monitor was upgraded to measure at several times during one pulse to detect a sudden change of the beam profile. The beam loss monitor was upgraded to read out always to detect unexpected high intensity beam promptly. These signals were included in the interlock system. In this paper, the detail of the beam monitor system upgrade will be reported.  
slides icon Slides MOM309 [1.980 MB]  
MOPGF001 Use Interrupt Driven Mode to Redesign an IOC for Digital Power Supply at SSC-LINAC power-supply, controls, linac, Ethernet 1
  • S. An, K. Gu, X.J. Liu, J.Q. Wu, W. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
  SSC-LINAC control system is based on EPICS architecture. The sub control system of digital power supplies is a kind of IOC send and receive custom command via Ethernet and TCP/IP protocol. The old IOC is designed to use period scan mode IOC, and there are so many digital power supplies, that we can't make sure every connect condition of digital power supply is fine. IOC must wait a long time if one of them can't connect correctly and other digital power supply's PV may also be blocked. An IOC that uses interrupt driven mode to avoid the shortcoming was designed. This will be described in this paper.  
poster icon Poster MOPGF001 [0.853 MB]  
MOPGF002 Magnet Corrector Power Supply Controller for LCLS-I controls, interface, feedback, power-supply 1
  • S. Babel, B. Lam, K. Luchini, J.J. Olsen, T. Straumann, E. Williams, C. Yee
    SLAC, Menlo Park, California, USA
  The MCOR-12[Magnet Corrector] is a 16-channel modular architecture, precision magnet driver, capable of providing bipolar output currents in the range from 12A to +12A. A single, unregulated bulk power supply provides the main DC power for the entire crate. Currently the MCORs have a 1000ppm regulation on the B-field. The MCOR controller card upgrades, existing LCLS-I and future LCLS-II needed, controls for Magnet Corrector Power Supplies. The project shifts the existing functionality of the VME based DAC and SAM and an Allen Bradley PLC into a new slot-0 card residing in the MCOR chassis. Elimination of the VME crate and the PLC will free up rack space to be used in future. The new interface card has a long term stability of 100 ppm and monitors ground fault currents and various other interlocks for the MCOR power supplies. The controller can interface to EPICS Channel Access and Fast Feedback system at SLAC using two Gigabit Ethernet ports and has an FPGA based EVR for getting 'time stamps' from the Event Generator system at SLAC. The EPICS control system along with embedded diagnostic features will allow for enhanced remote control and monitoring of the power supplies.
*S. Babel, S. Cohen, "Digital Control Interface for Bipolar Corrector Power, BiRa Systems, Albuquerque **G.E. Leyh, "A Multi-Channel Corrector Magnet Controller"
poster icon Poster MOPGF002 [1.646 MB]  
MOPGF008 Embedded Environment with EPICS Support for Control Applications controls, interface, Ethernet, operation 1
  • Y.-S. Cheng, K.T. Hsu, C.H. Huang, D. Lee, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
  System on a chip (SoC) is widely used in embedded environment. Current generation SoC commercial products with small footprint and low-cost have powerful in CPU performance and rich interface solution to support many control applications. To deal with some embedded control applications, the "Banana Pi" which is a card-size single-board computer and runs Linux-based operation system has been adopted as the EPICS IOC to implement several applications. The efforts for implementing are summarized in this paper.  
poster icon Poster MOPGF008 [2.985 MB]  
MOPGF015 Fast Wire Scanner Upgrade for LCLS controls, interface, real-time, emittance 1
  • J.M. D'Ewart, M.L. Campell, P. Krejcik, H. Loos, K. Luchini
    SLAC, Menlo Park, California, USA
  Wire scanners are a main diagnostic tool for transverse beam size and emittance measurements at LCLS. The original SLAC wire scanners were not optimized for speed (taking minutes to scan), and can't perform at the desired level of position resolution necessary for measuring LCLS' small beam size. A new fast wire scanner, based on a dc linear servo motor, has been designed and installed in the LCLS. The new fast wire scanner has several advantages over the original wire scanner: scan times are reduced from minutes to seconds while minimizing wire vibrations. Rather than counting open-loop step pulses, the new fast wire scanner uses real time position capture for beam synchronous sampling of the wire position, enhancing beam profile accuracy.  
MOPGF027 Real-Time EtherCAT Driver for EPICS and Embedded Linux at Paul Scherrer Institute (PSI) controls, Linux, real-time, interface 1
  • D. Maier-Manojlovic
    PSI, Villigen, Villigen, Switzerland
  EtherCAT bus and interface are widely used for external module and device control in accelerator environments at PSI, ranging from undulator communication, over basic I/O control to Machine Protection System for the new SwissFEL accelerator. A new combined EPICS/Linux driver has been developed at PSI, to allow for simple and mostly automatic setup of various EtherCAT configurations. The new driver is capable of automatic scanning of the existing device and module layout, followed by self-configuration and finally autonomous operation of the EtherCAT bus real-time loop. If additional configuration is needed, the driver offers both user- and kernel-space APIs, as well as the command line interface for fast configuration or reading/writing the module entries. The EtherCAT modules and their data objects (entries) are completely exposed by the driver, with each entry corresponding to a virtual file in the Linux procfs file system. This way, any user application can read or write the EtherCAT entries in a simple manner, even without using any of the supplied APIs. Finally, the driver offers EPICS interface with automatic template generation from the scanned EtherCAT configuration.  
poster icon Poster MOPGF027 [30.572 MB]  
MOPGF029 Personnel Protection System Upgrade for the LCLS Electron Beam Linac linac, operation, PLC, hardware 1
  • C. Cyterski, E.P. Chin
    SLAC, Menlo Park, California, USA
  As facilities age and evolve, constant effort is needed in upgrading control system infrastructure; this applies to all aspects of an accelerator facility. Portions of the Personnel Protection System of the Linac Coherent Light Source are still relying on a legacy, relay-based Safety System. An upgrade is underway to modernize these systems using Siemens S7-300 Safety PLCs and Pilz PNOZMulti programmable controllers. The upgrade will be rolled out over multiple years requiring the implementation to be fully compatible with adjacent legacy system while setting the foundation for the new generation system. The solution relies on a modularized safety system which can be deployed in a short time (1 month) while being flexible enough to adapt to the evolving needs over the next 20 years.  
poster icon Poster MOPGF029 [0.274 MB]  
MOPGF030 Upgrade of the Control and Interlock Systems for the Magnet Power Supplies in T2K Primary Beamline controls, PLC, operation, proton 1
  • K. Nakayoshi, Y. Fujii, K. Sakashita
    KEK, Tsukuba, Japan
  T2K is a long-baseline neutrino oscillation experiment at J-PARC in Japan. High intensity neutrino/antineutrino beam is generated and propagates 295km to Super-Kamiokande. High intensity proton beam, 350 kW in May 2015, is extracted from Main Ring synchrotron, guided through a primary proton beamline to a graphite target using normal-conducting (NC) magnets and super-conducting combined-function magnets. In October 2014, we replaced all the power supplies (PSs) for NC magnets with newly developed PSs. We also developed new control system based on EPICS and PLCs, putting emphasis on the safe operation of power supplies, and integrated it into the existing interlock system. Consequently the latency time for the interlock system was improved. We report the actual implementation and operation results of these developments.  
MOPGF033 New Developments on EPICS Drivers, Clients and Tools at SESAME controls, timing, Linux, Ethernet 1
  • I. Saleh, Y.S. Dabain, A. Ismail
    SESAME, Allan, Jordan
  SESAME is a 2.5 GeV synchrotron light source under construction in Allan, Jordan. The control system of SESAME is based on EPICS and CSS. Various developments in EPICS drivers, clients, software tools and hardware have been done. This paper will present some of the main achievements: new linux-x86 EPICS drivers and soft IOCS developed for the Micro-Research Finland event timing system replacing the VME/VxWorks-based drivers; new EPICS drivers and clients developed for the Basler GigE cameras; an IOC deployment and management driver developed to monitor the numerous virtual machines running the soft IOCs, and to ease deployment of updates to these IOCs; an automated EPICS checking tool developed to aid in the review, validation and application of the in-house rules for all record databases; a new EPICS record type (mbbi2) developed to provide alarm features missing from the multibit binary records found in the base distribution of EPICS; and a test of feasibility for replacing serial terminal servers with low-cost computers.  
poster icon Poster MOPGF033 [0.954 MB]  
MOPGF035 Control System Status of SuperKEKB Injector Linac network, operation, status, controls 1
  • M. Satoh, K. Furukawa, K. Mikawa, F. Miyahara, Y. Seimiya, T. Suwada
    KEK, Ibaraki, Japan
  • K. Hisazumi, T. Ichikawa, T. Kudou, S. Kusano, Y. Mizukawa
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • H.S. Saotome, M. Takagi
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
  Toward SuperKEKB project, the injector linac upgrade is ongoing for aiming at the stable electron/positron beam operation with low emittance and high intensity bunch charge. To obtain such high quality beam, we have being commissioning many newly developed subsystems including a low emittance photocathode rf gun since October of 2013. Eventually, we will perform the simultaneous top-up for the four independent storage rings including two light sources. The stable beam operation as long as possible is desired since the prospective physics results strongly depends on the reliability and availability of accelerator operation. Since the middle stage of KEKB project, the injector linac control system has been gradually transferred to the EPICS based one from the in-house system based on RPC. We are expanding the existing control system for the newly installed devices like a network attached power supply, timing jitter monitoring system, and so on. In addition, many commissioning tools are now under development to accelerate the high quality beam development. In this paper, we will describe the present status of injector linac control system and future plan in detail.  
poster icon Poster MOPGF035 [1.139 MB]  
MOPGF036 Control System Developments at the Electron Storage Ring DELTA controls, software, network, hardware 1
  • D. Schirmer, A. Althaus, F.H. Bahnsen
    DELTA, Dortmund, Germany
  Increasing demands, mandatory replacement of obsolete controls equipment as well as the introduction of new soft- and hardware technologies with short innovation cycles are some of the reasons why control systems need to be revised continuously. Thus, also at the EPICS-based DELTA control system, several projects have been tackled in recent years: (1) Embedding the new CHG-based short-pulse facility for VUV and THz radiation required, for example, the integration of IP-cameras, Raspberry-Pi PCs and EtherCat/TwinCat wired I/O-devices. (2) The request for a staff-free control room led to the programming of new web applications using Python and the Django framework. This development resulted in a web-based interlock system that can be run, amongst others, on Android-based mobile devices. (3) The virtualization infrastructure for server consolidation has been extended and migrated from XEN to the kernel based KVM approach. (4) I/O-units which were connected via conventional fieldbus systems (CAN, GPIB, RS-232/485), are now gradually replaced by TCP/IP-controlled devices. This paper describes details of these upgrades and further new developments.  
poster icon Poster MOPGF036 [1.158 MB]  
MOPGF037 Upgrades to Control Room Knobs at Slac National Accelerator Laboratory hardware, controls, software, interface 1
  • S. L. Hoobler, S.C. Alverson, C. Cyterski, R.C. Sass
    SLAC, Menlo Park, California, USA
  For years, accelerator operators at the SLAC National Accelerator Laboratory (SLAC) have favored hardware knobs in the control room for accelerator tuning. Hardware knobs provide a tactile, intuitive, and efficient means of adjusting devices. The evolution of separate control systems for different accelerator facilities at SLAC has resulted in multiple flavors of knob hardware and software. To improve efficiency, space usage, and ease of use, the knob systems have been upgraded and integrated.  
poster icon Poster MOPGF037 [0.740 MB]  
MOPGF042 EPICS IOC Based on Computer-On-Module for the LNL Laboratory controls, hardware, software, beam-diagnostic 1
  • J.A. Vásquez, D. Pedretti, R. Ponchia
    INFN/LNL, Legnaro (PD), Italy
  • M.A. Bellato, R. Isocrate
    INFN- Sez. di Padova, Padova, Italy
  • M. Bertocco
    UNIPD, Padova (PD), Italy
  At LNL it is being carried out an upgrade campaign of the control systems of the accelerator complex. The two main goals are standardization of hardware and software and system interoperability. EPICS has been chosen as the standard framework for developing new control systems; this will address software standardization and system interoperability. In order to achieve hardware standardization, a new EPICS IOC is under development, which will become a basic construction block for all future control systems. The COM (Computer-on-Modules) from factor has been chosen as the hardware platform for the IOC, along with the peripheral devices needed for developing all the foreseen control system at LNL. Prototypes of this IOC has been developed using ADLINK's Type 6 COM Express modules on generic carrier boards with DIO, ADC and DAC expansion boards. These prototypes have been tested under typical applications at LNL in order to validate the hardware platform choice. Experimental results show that the performance of the IOC in terms of effective resolution (ENOB and bias error), sample rates and CPU usage is suitable for satisfying the requirements of the control systems.  
poster icon Poster MOPGF042 [1.904 MB]  
MOPGF045 MEBT and D-Plate Control System Status of the Linear IFMIF Prototype Accelerator controls, quadrupole, operation, diagnostics 1
  • J. Calvo, D. Jimenez-Rey, E. Molina Marinas, J. Molla, I. Podadera
    CIEMAT, Madrid, Spain
  Funding: This work has been partially funded by the Spanish Ministry of Economy and Competitiveness, under projects OPTIMHAC FIS2013-40860-R and IFMIF-EVEDA II. Ref: AIC-A-2011-0654.
Linear IFMIF* Prototype Accelerator (LIPAc), Rokkasho, Japan, comprises a succession of devices and systems that accelerate a deuteron beam up to 9 MeV with a current of 125 mA, generating a power of 1.125 MW, and transport it up to a beam dump. The beam power becomes critical from the point of view of losses; even tiny losses must be avoided. This fact, and the complexity of the accelerator operation, requires a coherent strategy when designing, commissioning and optimizing the accelerator control system, specifically focused in the control systems of the Medium Energy Beam Transport (MEBT) and the Diagnostic Plate (DP, a movable set of diagnostics). Both systems are essential to validate the performance of the accelerator and particularly the ion source, Radio Frequency (RF) and Radio Frequency Quadrupole (RFQ) systems. This contribution will describe the recent advances in the control architectures and the EPICS based developments achieved in MEBT for the motion control of bunchers and scrapers, control of the power supplies in quadrupoles and steerers, and refrigeration and vacuum. Besides, control of fluorescence profile monitors (FPMs) in the D-Plate is displayed.
*IFMIF, the International Fusion Materials Irradiation Facility, is an accelerator-based neutron source that will use Li (d, xn) reactions to generate a flux of neutrons with a broad peak at 14 MeV.
poster icon Poster MOPGF045 [1.333 MB]  
MOPGF048 IBEX - the New EPICS Based Instrument Control System at the ISIS Pulsed Neutron and Muon Source controls, GUI, experiment, LabView 1
  • F.A. Akeroyd, K. V. L. Baker, M.J. Clarke, G.D. Howells, D.P. Keymer, K.J. Knowles, C. Moreton-Smith, D.E. Oram
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • M. Bell, I.A. Bush, R.F. Nelson, K. Ward, K. Woods
    Tessella, Abingdon, United Kingdom
  Instrument control at ISIS is in the process of migrating from a mainly locally developed system to an EPICS based system. The new control system, called IBEX, was initially used during commissioning of a new instrument prior to a long maintenance shutdown. This first usage has provided valuable feedback and significant progress has been made on enhancing the system during the facility maintenance period in preparation for the move onto production use. Areas that will be of particular interest to scientists in the future will be linking feedback from live data analysis with instrument control and also providing a simple and powerful scripting interface for facility users. In this paper we will cover the architecture and design of the new control system, our choices of technologies, how the system has evolved following initial use, and our plans for moving forward.  
poster icon Poster MOPGF048 [0.713 MB]  
MOPGF056 Synchronising High-Speed Triggered Image and Meta Data Acquisition for Beamlines hardware, data-acquisition, controls, framework 1
  • N. De Maio, A.P. Bark, T.M. Cobb, J.A. Thompson
    DLS, Oxfordshire, United Kingdom
  High-speed image acquisition is becoming more and more common on beamlines. As experiments increase in complexity, the need to record parameters related to the environment at the same time increases with them. As a result, conventional systems for combining experimental meta data and images often struggle to deliver at a speed and precision that would be desirable for the experiment. We describe an integrated solution that addresses those needs, overcoming the performance limitations of PV monitoring by combining hardware triggering of an ADC card, coordination of signals in a Zebra box* and three instances of area-Detector streaming to HDF5 data. This solution is expected to be appropriate for frame rates ranging from 30Hz to 1000Hz, with the limiting factor being the maximum speed of the camera. Conceptually, the individual data streams are arranged in pipelines controlled by a master Zebra box, expecting start/stop signals on one end and producing the data collections at the other. This design ensures efficiency on the acquisition side while allowing easy interaction with higher-level applications on the other.
*T. Cobb, Y. Chernousko, I. Uzun, ZEBRA: A Flexible Solution for Controlling Scanning Experiments, Proc. ICALEPCS13,
poster icon Poster MOPGF056 [0.451 MB]  
MOPGF057 Quick Experiment Automation Made Possible Using FPGA in LNLS FPGA, software, experiment, Linux 1
  • M.P. Donadio, J.R. Piton, H.D. de Almeida
    LNLS, Campinas, Brazil
  Beamlines in LNLS are being modernized to use the synchrotron light as efficiently as possible. As the photon flux increases, experiment speed constraints become more visible to the user. Experiment control has been done by ordinary computers, under a conventional operating system, running high-level software written in most common programming languages. This architecture presents some time issues as computer is subject to interruptions from input devices like mouse, keyboard or network. The programs quickly became the bottleneck of the experiment. To improve experiment control and automation speed, we transferred software algorithms to a FPGA device. FPGAs are semiconductor devices based around a matrix of logic blocks reconfigurable by software. The results of using a NI Compact RIO device with FPGA programmed through LabVIEW for adopting this technology and future improvements are briefly shown in this paper.  
poster icon Poster MOPGF057 [5.360 MB]  
MOPGF070 Report on Control/DAQ Software Design and Current State of Implementation for the Percival Detector. detector, controls, software, Linux 1
  • A.S. Palaha, C. Angelsen, Q. Gu, J. Marchal, U.K. Pedersen, N.P. Rees, N. Tartoni, H. Yousef
    DLS, Oxfordshire, United Kingdom
  • M. Bayer, J. Correa, P. Gnadt, H. Graafsma, P. Göttlicher, S. Lange, A. Marras, S. Řeža, I. Shevyakov, S. Smoljanin, L. Stebel, C. Wunderer, Q. Xia, M. Zimmer
    DESY, Hamburg, Germany
  • G. Cautero, D. Giuressi, A. Khromova, R.H. Menk, G. Pinaroli
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • D. Das, N. Guerrini, B. Marsh, T.C. Nicholls, I. Sedgwick, R. Turchetta
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • H.J. Hyun, K.S. Kim, S.Y. Rah
    PAL, Pohang, Republic of Korea
  The increased brilliance of state-of-the-art Synchrotron radiation sources and Free Electron Lasers require imaging detectors capable of taking advantage of these light source facilities. The PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile and Large") detector is being developed in collaboration between DESY, Elettra Sincrotrone Trieste, Diamond Light Source and Pohang Accelerator Laboratory. It is a CMOS detector targeting soft X-rays < 1 KeV, with a high resolution of up to 13 M pixels reading out at 120 Hz, producing a challenging data rate of 6 GB/s. The controls and data acquisition system will include a SDK to allow integration with third party control systems like Tango and DOOCS; an EPICS areaDetector driver will be included by default. It will make use of parallel readout to keep pace with the data rate, distributing the data over multiple nodes to create a single virtual dataset using the HDF5 file format for its speed advantages in high volumes of regular data. This paper presents the design of the control system software for the Percival detector, an update of the current state of the implementation carried out by Diamond Light Source.  
poster icon Poster MOPGF070 [0.359 MB]  
MOPGF097 Architecture of Transverse Multi-Bunch Feedback Processor at Diamond feedback, controls, FPGA, experiment 1
  • M.G. Abbott, G. Rehm, I.S. Uzun
    DLS, Oxfordshire, United Kingdom
  We describe the detailed internal architecture of the Transverse Multi-Bunch Feedback processor used at Diamond for control of multi-bunch instabilities and measurement of betatron tunes. Bunch by bunch selectable control over feedback filters, gain and excitation allows fine control over feedback, allowing for example the single bunch in a hybrid or camshaft fill pattern to be controlled independently from the bunch train. It is also possible to excite all bunches at a single frequency while simultaneously sweeping the excitation for tune measurement of a few selected bunches. The single frequency excitation has been used for continuous measurement of the beta-function. A simple programmable event sequencer provides support for up to 7 steps of programmable sweeps and changes to feedback and excitation, allowing a variety of complex and precisely timed beam characterisation experiments including grow-damp measurements in unstable conditions and programmed bunch cleaning. Finally input and output compensation filters allow for correction of front end and amplifier phasing at higher frequencies.  
poster icon Poster MOPGF097 [0.247 MB]  
MOPGF105 Device Control Database Tool (DCDB) controls, database, PLC, interface 1
  • P.A. Maslov, M. Komel, M. Pavleski, K. Žagar
    Cosylab, Ljubljana, Slovenia
  Funding: This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289485.
We have developed a control system configuration tool, which provides an easy-to-use interface for quick configuration of the entire facility. It uses Microsoft Excel as the front-end application and allows the user to quickly generate and deploy IOC configuration (EPICS start-up scripts, alarms and archive configuration) onto IOCs; start, stop and restart IOCs, alarm servers and archive engines, and more. The DCDB tool utilizes a relational database, which stores information about all the elements of the accelerator. The communication between the client, database and IOCs is realized by a REST server written in Python. The key feature of the DCDB tool is that the user does not need to recompile the source code. It is achieved by using a dynamic library loader, which automatically loads and links device support libraries. The DCDB tool is compliant with CODAC (used at ITER and ELI-NP), but can also be used in any other EPICS environment (e.g. it has been customized to work at ESS).
poster icon Poster MOPGF105 [2.745 MB]  
MOPGF117 The Control System for Trim-Coil Relay-Selectors in J-PARC MR controls, power-supply, PLC, operation 1
  • K.C. Sato, N. Kamikubota, N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • S. Igarashi
    KEK, Ibaraki, Japan
  • S.Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
  In J-PARC main ring, each of the main magnets (Dipole, Quadrupole, and Sextupole) has a trim-coil. The basic aim of trim-coil is to correct small deviation of each magnetic field. In addition, we have used them for other purposes, for example: (1) in Beam-Based-Alingnment studies, (2) as flux monitors, and (3) to make a short-circuit to reduce ripples of magnetic field. At a moment, trim-coils can be used for only one purpose. Relay-switches were introduced to change trim-coil connection to a device, which corresponds to the selected purpose. When the purpose is switched, 1,200 on-site relays have to be changed manually, distributed in three buildings. Thus, a control system for trim-coil relay-selectors was developed in winter, 2014-2015. EPICS tools and environment are used to develop the system. The system comprises PLC I/O modules with controller running EPICS on Linux. The system will be in operation after March, 2015. By using the system, a much easier switching of relay-switches than before, is expected.  
poster icon Poster MOPGF117 [0.498 MB]  
MOPGF123 Upgrades of Temperature Measurements and Interlock System for the Production Target at J-PARC Hadoron Experimental Facility target, extraction, proton, hadron 1
  • K. Agari, Y. Morino, Y. Sato, A. Toyoda
    KEK, Tsukuba, Japan
  Funding: This work was supported by Grant-in-Aid (No. 26800153) for Young Scientists (B) of the Japan Ministry of Education, Culture, Sports, Science and Technology [MEXT].
Hadron experimental facility is designed to handle intense slow-extraction proton beam from Main Ring (MR) of Japan Proton Accelerator Research Complex (J-PARC). On May 23, 2013, 2×1013 proton beams were instantaneously extracted to Hadron experimental facility in 5 milliseconds due to the malfunction of the power supply for Extraction Quadrapole magnet for a spill feedback at MR. Therefore the production target made of gold was locally damaged at Hadron experimental facility because of overheat by absorbing proton beam. After the accident we upgraded target temperature measurements with 100 milliseconds sampling and synchronization with beam spills in order to promptly detect damage to the production target as soon as possible. In addition, we also upgraded temperature trend graphs and an interlock system in order to figure out the state of the production target. Currently Hadron experimental facility ready to accept slow-extraction proton beam. The results of the temperature measurements and the interlock system for the production target during beam operation at J-PARC Hadron experimental facility, will be reported in this paper.
poster icon Poster MOPGF123 [0.497 MB]  
MOPGF141 Upgrade of Abort Trigger System for SuperKEKB software, controls, timing, FPGA 1
  • S. Sasaki, A. Akiyama, M. Iwasaki, T. Naito, T.T. Nakamura
    KEK, Ibaraki, Japan
  The beam abort system was installed in KEKB in order to protect the accelerator equipment and the Belle detector, and for radiation safety, from high current beams. For SuperKEKB, the new abort trigger system was developed. It collects more than 130 beam abort request signals and issues the beam abort trigger signal to the abort kickers. The request signals are partially aggregated in local control rooms located along the SuperKEKB ring and finally aggregated in central control room. In order to increase the system reliability, the VME-based module and the O/E module was developed, and all the abort signals between the modules are transmitted as optical signals. The VME-based module aggregates input signals and input signals are OR and latched. The E/O module converts electrical signal from abort request source to optical signal. The system also has the timestamp function to keep track of the abort signal received time. The timestamps are expected to contribute to identify the cause of the beam abort. Based on feasibility tests with a prototype module, the new module design was improved and fixed. This paper describes the details of the new abort trigger system.  
poster icon Poster MOPGF141 [0.523 MB]  
MOPGF160 ARIEL Control System at TRIUMF - Status Update controls, PLC, interface, network 1
  • R.B. Nussbaumer, D. Dale, K. Ezawa, K. Fong, H. Hui, R. Iranmanesh, J. Kavarskas, D.B. Morris, J.J. Pon, S. Rapaz, J.E. Richards, M. Rowe, T.M. Tateyama, E. Tikhomolov, G. Waters, P.J. Yogendran
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  The Advanced Rare Isotope & Electron Linac (ARIEL) facility at TRIUMF has now reached completion of the first phase of construction; the Electron Linac. A commissioning control system has been built and used to commission the electron e-gun and two stages of SRF acceleration. Numerous controls subsystems have been deployed including beamlines, vacuum systems, beamline diagnostics, machine protect system interfaces, LLRF, HPRF, and cryogenics. This paper describes some of the challenges and solutions that were encountered, and describes the scope of the project to date. An evaluation of some techniques that had been proposed and described at ICALEPCS 2013 are included.  
poster icon Poster MOPGF160 [1.360 MB]  
MOPGF161 LANSCE Control System Upgrade Status and Challenges controls, hardware, FPGA, neutron 1
  • M. Pieck, D. Baros, E. Björklund, J.A. Faucett, J.G. Gioia, J.O. Hill, P.S. Marroquin, J.D. Paul, J.D. Sedillo, F.E. Shelley, H.A. Watkins
    LANL, Los Alamos, New Mexico, USA
  Funding: Work supported by Los Alamos National Laboratory for the U.S. Department of Energy under contract W-7405-ENG-36. LA-UR-15-27880
The Los Alamos Neutron Science Center (LANSCE) linear accelerator drives five user facilities: Isotope Production, Proton Radiography, Ultra-Cold Neutrons, Weapons Neutron Research, and Neutron Scattering. In 2011, we started an ambitious project to refurbish key elements of the LANSCE accelerator that have become obsolete or were near end-of-life. The control system went through an upgrade process that affected different areas of LANSCE. Many improvements have been made but funding challenges and LANSCE operational commitments have delayed project deliverables. In this paper, we will discuss our upgrade choices, what we have accomplished so far, what we have learned about upgrading the existing control system and what challenges we still face.
poster icon Poster MOPGF161 [1.069 MB]  
MOPGF164 Status of the EPICS-Based Control and Interlock System of the Belle II PXD controls, detector, database, power-supply 1
  • M. Ritzert
    Heidelberg University, Heidelberg, Germany
  Funding: This work has been supported by the German Federal Ministry of Education and Research (BMBF) under Grant Identifier 05H12VHH.
The Belle II e+/e collider experiment at KEK will include a new pixelated detector (PXD) based on DEPFET technology as the innermost layer. This detector requires a complex control and readout infrastructure consisting of several ASICs and FPGA boards. This paper present the architecture and EPICS-based implementation of the control, alarm, and interlock systems, their interface to the various subsystems, and to the NSM2-based Belle II run-control. The complex startup sequence is orchestrated by a statemachine. CSS is used to implement the user interface. The alarm system uses CSS/BEAST, and is designed to minimize spurious alarms. The interlock system consists of two main parts: a hardware-based system that triggers on adverse environmental (temperature, humidity, radiation) conditions, and a software-based system. Strict monitoring including the use of heartbeats ensures permanent protection and fast reaction times. Especially the power supply system is monitored for malfunctions, and all user inputs are verified before they are sent to the hardware. The control system also incorporates archiving, logging, and reporting in a uniform workflow for the ease of daily operation.
For the DEPFET Collaboration.
poster icon Poster MOPGF164 [6.742 MB]  
TUA3O04 CS-Studio Scan System Parallelization controls, interface, experiment, operation 1
  • K.-U. Kasemir, M.R. Pearson
    ORNL, Oak Ridge, Tennessee, USA
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.
slides icon Slides TUA3O04 [2.785 MB]  
TUB3O03 The Modular Control Concept of the Neutron Scattering Experiments at the European Spallation Source ESS controls, interface, neutron, timing 1
  • T. Gahl, R.J. Hall-Wilton, O. Kirstein, T. Korhonen, T.S. Richter, A. Sandström, I. Sutton, J.W. Taylor
    ESS, Lund, Sweden
  The European Spallation Source (ESS) in Lund, Sweden has just entered into neutron beam line construction starting detailed design in 2015. As a collaboration of 17 European countries the majority of hardware devices will be provided in-kind. This presents numerous technical and organizational challenges for the construction and the integration of the neutron instrumentation into the facility wide infrastructure; notably the EPICS control network and the facilities absolute timing system. In this contribution we present a strategy for the modularity of the instruments hardware with well-defined standardized functionality and a minimized number of control & data interfaces. Key point of the strategy is the time stamping of all readings from the instruments control electronics extending the event mode data acquisition from detected neutron events to all metadata. This gives the control software the flexibility necessary to adapt the functionality of the instruments to the demands of each single experimental run. Examples of the advantages of that approach in classical motion control as well as in complex robotics systems and matching hardware requirements necessary, is discussed.
* S.Peggs et al., ESS Technical Design Report(ESS-2013-0001, 2013)
** T.Gahl et al., Modularity & Integration of Event Mode Data Acquisition and Instrument Control for ESS, Proc. of ICANS XXI(2015)
slides icon Slides TUB3O03 [2.111 MB]  
TUC3O04 Reusable Patient Safety System Framework for the Proton Therapy Centre at PSI GUI, proton, interface, FPGA 1
  • P. Fernandez Carmona, M. Eichin, M. Grossmann, A. Mayor, H.A. Regele
    PSI, Villigen, Switzerland
  • E. Johansen
    PSI, Villigen, Villigen, Switzerland
  A new gantry for cancer treatment is being installed at the Proton Therapy Centre in the Paul Scherrer Institut (PSI), where already two gantries and a fixed line operate. A protection system is required to ensure the safety of patients, requiring stricter redundancy, verification and quality assurance (QA) measures than other accelerators. It supervises the Therapy System, sensors, monitors and operator interface and can actuate magnets and beam blockers. We built a reusable framework to increase the maintainability of the system using the commercial IFC1210 VME controller, developed for other PSI facilities. It features a FPGA implementing all the safety logic and two processors, one dedicated to debugging and the other to integrating in the facility's EPICS environment. The framework permitted us to reduce the design and test time by an estimated 40% thanks to a modular approach. It will also allow a future renovation of other areas with minimum effort. Additionally it provides built-in diagnostics such as time measurement statistics, interlock analysis and internal visibility. The automation of several tasks reduces the burden of QA in an environment with tight time constraints.  
slides icon Slides TUC3O04 [10.385 MB]  
TUD3O05 Integrating control applications into different control systems controls, real-time, software, status 1
  • M. Killenberg, M. Hierholzer, Ch. Schmidt
    DESY, Hamburg, Germany
  • S. Marsching
    Aquenos GmbH, Baden-Baden, Germany
  • J. Wychowaniak
    TUL-DMCS, Łódź, Poland
  Funding: This work is supported by the Helmholtz Validation Fund HVF-0016 "MTCA.4 for Industry".
Porting complex device servers from one control system to another is often a major effort due to the strong code coupling of the business logic to control system data structures. Together with its partners from the Helmholtz Association and from industry, DESY is developing a control system adapter. It allows to write applications in a control system independent way, while still being able to update the process variables and react on control system triggers. We report on the status of the project and the experience we gained trying to write portable device servers.
slides icon Slides TUD3O05 [0.623 MB]  
WEA3O02 Recent Advancements and Deployments of EPICS Version 4 controls, detector, experiment, database 1
  • G.R. White, M.V. Shankar
    SLAC, Menlo Park, California, USA
  • A. Arkilic, L.R. Dalesio, M.A. Davidsaver, M.R. Kraimer, N. Malitsky, B.S. Martins
    BNL, Upton, Long Island, New York, USA
  • S.M. Hartman, K.-U. Kasemir
    ORNL, Oak Ridge, Tennessee, USA
  • D.G. Hickin
    DLS, Oxfordshire, United Kingdom
  • A.N. Johnson, S. Veseli
    ANL, Argonne, Ilinois, USA
  • T. Korhonen
    ESS, Lund, Sweden
  • R. Lange
    ITER Organization, St. Paul lez Durance, France
  • M. Sekoranja
    Cosylab, Ljubljana, Slovenia
  • G. Shen
    FRIB, East Lansing, Michigan, USA
  EPICS version 4 is a set of software modules that add to the base of the EPICS toolkit for advanced control systems. Version 4 adds the possibility of process variable values of structured data, an introspection interface for dynamic typing plus some standard types, high-performance streaming, and a new front-end processing database for managing complex data I/O. A synchronous RPC-style facility has also been added so that the EPICS environment supports service-oriented architecture. We introduce EPICS and the new features of version 4. Then we describe selected deployments, particularly for high-throughput experiment data transport, experiment data management, beam dynamics and infrastructure data.  
slides icon Slides WEA3O02 [2.409 MB]  
WEM303 Virtualisation within the Control System Environment at the Australian Synchrotron controls, synchrotron, hardware, network 1
  • C.U. Felzmann, N. Hobbs, A. C. Starritt
    SLSA, Clayton, Australia
  Virtualisation technologies significantly improve efficiency and availability of computing services while reducing the total cost of ownership. Real-time computing environments used in distributed control systems require special consideration when it comes to server and application virtualisation. The EPICS environment at the Australian Synchrotron comprises more than 500 interconnected physical devices; their virtualisation holds great potential for reducing risk and maintenance. An overview of the approach taken by the Australian Synchrotron, the involved hardware and software technologies as well as the configuration of the virtualisation eco-system is presented, including the challenges, experiences and lessons learnt.  
slides icon Slides WEM303 [1.235 MB]  
poster icon Poster WEM303 [0.958 MB]  
WEM304 Status Monitoring of the EPICS Control System at the Canadian Light Source controls, network, status, database 1
  • G. Wright, M. Bree
    CLS, Saskatoon, Saskatchewan, Canada
  The CLS uses the EPICS Distributed Control System (DCS) for control and feedback of a linear accelerator, booster ring, electron storage ring, and numerous x-ray beamlines. The number of host computers running EPICS IOC applications has grown to 200, and the number of IOC applications exceeds 700. The first part of this paper will present the challenges and current efforts to monitor and report the status of the control system itself by monitoring the EPICS network traffic. This approach does not require any configuration or application modification to report the currently active applications, and then provide notification of any changes. The second part will cover the plans to use the information collected dynamically to improve upon the information gathered by process variable crawlers for an IRMIS database, with the goal to eventually replace the process variable crawlers.  
slides icon Slides WEM304 [0.638 MB]  
poster icon Poster WEM304 [1.514 MB]  
WEM307 Custom Hardware Platform Based on Intel Edison Module controls, Ethernet, hardware, embedded 1
  • D. Pedretti, D. Bortolato, F. Gelain, M.G. Giacchini, D. Marcato, M. Montis, S. Pavinato, J.A. Vásquez
    INFN/LNL, Legnaro (PD), Italy
  • M.A. Bellato, R. Isocrate
    INFN- Sez. di Padova, Padova, Italy
  The Computer-on-Module approach makes cutting edge technology easily accessible and lowers the entry barriers to anyone prototyping and developing embedded systems. Furthermore, it is possible to add all the system specific functionalities to the generic PC functions which are readily available in an off-the-shelf core module reducing the time to market and enhancing the creativity of system engineers. The purpose of this paper is to show a custom hardware platform based on the tiny and low power Intel Edison Compute Module, which uses a 22nm Intel processing core and contains connectivity elements to ensure device-to-device and device-to-cloud connectivity. The Intel Edison carrier board designed is expected to act as a local intelligent node, a readily available custom EPICS*,** IOC for extending the control reach to small appliances in the context of the SPES project. The board acts as an Ethernet to RS232/RS422 interface translator with Power-Over-Ethernet supply and network booting as key features of this platform. The x86 architecture of the Edison makes standard Linux software deployment straightforward. Currently the board is in prototyping stage.
slides icon Slides WEM307 [1.052 MB]  
poster icon Poster WEM307 [2.495 MB]  
WEPGF019 Database Applications Development of the TPS Control System database, controls, status, interface 1
  • Y.-S. Cheng, Y.-T. Chang, J. Chen, P.C. Chiu, K.T. Hsu, C.H. Huang, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
  The control system had been established for the new 3 GeV synchrotron light source (Taiwan Photon Source, TPS) which was successful to commission at December 2014. Various control system platforms with the EPICS framework had been implemented and commissioned. The relational database (RDB) has been set up for some of the TPS control system applications used. The EPICS data archive systems are necessary to be built to record various machine parameters and status information into the RDB for long time logging. The specific applications have been developed to analyze the archived data which retrieved from the RDB. One EPICS alarm system is necessary to be set up to monitor sub-system status and record detail information into the RDB if the problem happened. Some Web-based applications with RDB have been gradually created to show the TPS machine status related information. The efforts are described at this paper.  
poster icon Poster WEPGF019 [4.003 MB]  
WEPGF020 A Redundant EPICS Control System Based on PROFINET PLC, controls, Ethernet, interface 1
  • Z. Huang, C. Li, G. Liu, Y. Song, K. Wan
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  This paper will demonstrate a redundant EPICS control system based on PROFIENT. The control system consists of 4 levels: the EPICS IOC, the PROFINET IO controller, the PROFINET media and the PROFINET IO device. Redundancy at each level is independent of redundancy at each other level in order to achieve highest flexibility. The implementation and performance of each level will be described in this paper.  
poster icon Poster WEPGF020 [0.665 MB]  
WEPGF024 Interfacing EPICS to the Widespread Platform Management Interface IPMI interface, hardware, controls, monitoring 1
  • M. Ritzert
    Heidelberg University, Heidelberg, Germany
  Funding: This work has been supported by the German Federal Ministry of Education and Research (BMBF) under Grant Identifier 05H12VHH.
The Intelligent Platform Management Interface (IPMI) is a standardized interface to management functionalities of computer systems. The data provided typically includes the readings of monitoring sensors, such as fan speeds, temperatures, power consumption, etc. It is provided not only by servers, but also by uTCA crates that are often used to host an experiment's control and readout system. Therefore, it is well suited to monitor the health of the hardware deployed in HEP experiments. In addition, the crates can be controlled via IPMI with functions such as triggering a reset, or configuring IP parameters. We present the design and functionality of an EPICS module to interface to IPMI that is based on ipmitool. It supports automatic scanning for IPMI sensors and filling the PV metadata (units, meaning of status words in mbbi records) from the IPMI sensor information. Most importantly, the IPMI-provided alarm thresholds are automatically placed in the PV for easy implementation of an alarm system to monitor IPMI hardware.
For the DEPFET Collaboration.
poster icon Poster WEPGF024 [2.362 MB]  
WEPGF030 The EPICS Archiver Appliance controls, interface, database, operation 1
  • M.V. Shankar, L.F. Li
    SLAC, Menlo Park, California, USA
  • M.A. Davidsaver
    BNL, Upton, New York, USA
  • M.G. Konrad
    FRIB, East Lansing, Michigan, USA
  The EPICS Archiver Appliance was developed by a collaboration of SLAC, BNL and FRIB to allow for the archival of millions of PVs, mainly focusing on data retrieval performance. It offers the ability to cluster appliances and to scale by adding appliances to the cluster. Multiple stages and an inbuilt process to move data between stages facilitates the usage of faster storage and the ability to decimate data as it is moved. An HTML management interface and scriptable business logic significantly simplifies administration. Well-defined customization hooks allow facilities to tailor the product to suit their requirements. Mechanisms to facilitate installation and migration have been developed. The system has been in production at SLAC for about 2 years now, at FRIB for about a year and is heading towards a production deployment at BNL. At SLAC, the system has significantly reduced maintenance costs while enabling new functionality that was not possible before. This paper presents an overview of the system and shares some of our experience with deploying and managing it at our facilities.  
poster icon Poster WEPGF030 [1.250 MB]  
WEPGF032 EPICS PV MANAGEMENT AND METHOD FOR RIBF CONTROL SYSTEM controls, database, network, monitoring 1
  • A. Uchiyama, N. Fukunishi, M. Komiyama
    RIKEN Nishina Center, Wako, Japan
  For the RIBF project (RIKEN RI Beam Factory), the EPICS-based distributed control system is utilized on Linux and vxWorks as an embedded EPICS technology. Utilizing NAS that have a High-Availability system as a shared storage, common EPICS programs (Base, Db, and so on) are shared with each EPICS IOC. In March 2015, the control system continues to grow and consists of about 50 EPICS IOCs, and more than 100,000 EPICS records. For a large number of control hardware devices, the dependencies between EPICS records and EPICS IOCs are complicated. For example, it is not easy to know accurate device information by only the EPICS record name information. Therefore, new management system was constructed for RIBF control system to call up detailed information easily. In the system, by parsing startup script files (st.cmd) for running EPICS IOCs, all EPICS records and EPICS fields are stored into the PostgreSQL-based database. By utilizing this stored data, it is successful to develop Web-based management and search tools. In this paper the system concept, the feature of the Web-based tools for the management, is reported in detail.  
poster icon Poster WEPGF032 [6.766 MB]  
WEPGF044 Filestore: A File Management Tool for NSLS-II Beamlines experiment, data-analysis, operation, interface 1
  • A. Arkilic, T.A. Caswell, D. Chabot, L.R. Dalesio, W.K. Lewis
    BNL, Upton, Long Island, New York, USA
  Funding: Brookhaven National Lab, Departmet of Energy
NSLS-II beamlines can generate 72,000 data sets per day resulting in over 2 M data sets in one year. The large amount of data files generated by our beamlines poses a massive file management challenge. In response to this challenge, we have developed filestore, as means to provide users with an interface to stored data. By leveraging features of Python and MongoDB, filestore can store information regarding the location of a file, access and open the file, retrieve a given piece of data in that file, and provide users with a token, a unique identifier allowing them to retrieve each piece of data. Filestore does not interfere with the file source or the storage method and supports any file format, making data within files available for NSLS-II data analysis environment.
poster icon Poster WEPGF044 [0.849 MB]  
WEPGF052 Development of the J-PARC Time-Series Data Archiver using a Distributed Database System, II distributed, database, status, hardware 1
  • N. Kikuzawa, A. Yoshii
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • H. Ikeda, Y. Kato
    JAEA, Ibaraki-ken, Japan
  The linac and the RCS in J-PARC (Japan Proton Accelerator Research Complex) have over 64000 EPICS records, providing enormous data to control much equipment. The data has been collected into PostgreSQL, while we are planning to replace it with HBase and Hadoop, a well-known distributed database and a distributed file system that HBase depends on. In the previous conference it was reported that we had constructed an archive system with a new version of HBase and Hadoop that cover a single point of failure, although we realized there were some issues to make progress into a practical phase. In order to revise the system with resolving the issues, we have been reconstructing the system with replacing master nodes with reinforced hardware machines, creating a kickstart file and scripts to automatically set up a node, introducing a monitoring tool to early detect flaws without fail, etc. In this paper these methods are reported, and the performance tests for the new system with accordingly fixing some parameters in HBase and Hadoop, are also examined and reported.  
WEPGF070 A New Data Acquiring and Query System With Oracle and Epics in the BEPCII data-acquisition, database, interface, controls 1
  • C.H. Wang, L.F. Li
    IHEP, Beijing, People's Republic of China
  The old historical Oracle database in the BEPCII has been put into operation in 2006, there are some problems such as the program operation instability and EPICS PVs loss, a new data acquiring and query system with Oracle and EPICS has been developed with Eclipse and JCA. On one hand, the authors adopt the technology of the table-space and the table-partition to build a special database schema in Oracle. On another hand, based on RCP and Java, EPICS data acquiring system is developed successfully with a very friendly user interface. It's easy for users to check the status of each PV's connection, manage or maintain the system. Meanwhile, the authors also develop the system of data query, which provides many functions, including data query, data plotting, data exporting, data zooming, etc. This new system has been put into running for three years. It also can be applied to any EPICS control systems.
*supported by NFSC(1137522)
poster icon Poster WEPGF070 [0.876 MB]  
WEPGF085 The Construction of the SuperKEKB Magnet Control System power-supply, interface, controls, operation 1
  • T.T. Nakamura, A. Akiyama, M. Iwasaki, H. Kaji, J.-I. Odagiri, S. Sasaki
    KEK, Ibaraki, Japan
  • T. Aoyama, T. Nakamura, K. Yoshii
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • N. Yoshifuji
    EJIT, Hitachi, Ibaraki, Japan
  There were more than 2500 magnet power supplies for KEKB storage rings and injection beam transport lines. For the remote control of such a large number of power supplies, the Power Supply Interface Controller Module (PSICM), which is plugged into each power supply, was developed. It has a microprocessor, ARCNET interface, trigger signal input interface, and parallel interface to the power supply. The PSICM is not only an interface card but also controls synchronous operation of the multiple power supplies with an arbitrary tracking curve. For SuperKEKB we have developed the upgraded version of the PSICM. It has the fully backward compatible interface to the power supply. The enhanced features includes high speed ARCNET communication and redundant trigger signals. Towards the phase 1 commissioning of SuperKEKB, the construction of the magnet control system is ongoing. First mass production of 1000 PSICMs has been completed and their installation is in progress. The construction status of the magnet control system is presented in this paper.  
poster icon Poster WEPGF085 [2.287 MB]  
WEPGF090 Design of EPICS IOC Based on RAIN1000Z1 ZYNQ Module Linux, embedded, controls, experiment 1
  • T. Xue, G.H. Gong, H. Li, J.M. Li
    Tsinghua University, Beijing, People's Republic of China
  ZYNQ is the new architecture of FPGA with dual high performance ARM Cortex-A9 processors from Xilinx. A new module with Giga Bit Ethernet interface based on the ZYNQ XC7Z010 is development for the High Purity Germanium Detectors' data acquisition in the CJPL (China JingPing under-ground Lab) experiment, which is named as RAIN1000Z1. Base on the nice RAIN1000Z1 hardware platform, EPICS is porting on the ARM Cortex-A9 processor with embedded Linux and an Input Output Controller is implemented on the RAIN1000Z1 module. Due to the combination of processor and logic and new silicon technology of ZYNQ, embedded Linux with TCP/IP sockets and real time high throughput logic based on VHDL are running in a single chip with small module hardware size, lower power and higher performance. This paper will introduce how to porting the EPICS IOC application on the ZYNQ based on embedded Linux and give a demo of IO control and RS232 communication.  
poster icon Poster WEPGF090 [1.777 MB]  
WEPGF095 Application of PyCDB for K-500 Beam Transfer Line database, controls, software, network 1
  • P.B. Cheblakov, S.E. Karnaev, O.A. Khudayberdieva
    BINP SB RAS, Novosibirsk, Russia
  Funding: This work has been supported by Russian Science Foundation (project N 14-50-00080).
The new injection complex for VEPP-4 and VEPP-2000 e-p colliders is under construction at Budker Institute, Novosibirsk, Russia. The double-direction bipolar transfer line K-500 of 130 and 220 meters length respectively will provide the beam transportation from the injection complex to the colliders with a frequency of 1 Hz. The designed number of particles in the transferred beam is 2*1010 of electrons or positrons, the energy is 500 MeV. K-500 has dozens of types of magnets, power supplies and electronic devices. It is rather complicated task to store and manage information about such a number of types and instances of entities, especially to handle relations between them. This knowledge is critical for configuration of all aspects of control system. Therefore we have chosen PyCDB to handle this information and automate configuration data extraction for different purposes starting with reports and diagrams and ending with high-level applications and EPICS IOCs' configuration. This paper considers concepts of this approach and shows the PyCDB database sctructure designed for K-500 transfer line. An automatic configuration of IOCs is described as integration with EPICS.
poster icon Poster WEPGF095 [0.750 MB]  
WEPGF105 EPICS V4 Evaluation for SNS Neutron Data neutron, network, detector, data-acquisition 1
  • K.-U. Kasemir, G.S. Guyotte, M.R. Pearson
    ORNL, Oak Ridge, Tennessee, USA
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Version 4 of the Experimental Physics and Industrial Control System (EPICS) toolkit allows defining application-specific structured data types (pvData) and offers a network protocol for their efficient exchange (pvAccess). We evaluated V4 for the transport of neutron events from the detectors of the Spallation Neutron Source (SNS) to data acquisition and experiment monitoring systems. This includes the comparison of possible data structures, performance tests, and experience using V4 in production on a beam line.
poster icon Poster WEPGF105 [1.277 MB]  
WEPGF113 Physics Application Infrastructure Design for FRIB Driver Linac target, controls, linac, ion 1
  • G. Shen, Z.Q. He, M. Ikegami, D. Liu, D.G. Maxwell, V. Vuppala
    FRIB, East Lansing, Michigan, USA
  • E.T. Berryman
    NSCL, East Lansing, Michigan, USA
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
FRIB, which is a new heavy ion accelerator facility to provide intense beams of rare isotopes is currently under construction at Michigan State University. Its driver linac accelerates all stable ions up to uranium, and targets to provides a CW beam with the energy of 200MeV/u and the beam power of 400 kW. The beam commissioning of the driver linac has been planned to start from December 2017. A new infrastructure is under development using service oriented architecture for physics applications, which is a 3-tier structure consisting of upper level, middle layer, and low level respectively. The detailed design and its current status will be presented in this paper.
WEPGF115 LabVIEW EPICS Program for Measuring BINP HLS of PAL-XFEL controls, LabView, hardware, distributed 1
  • H. J. Choi, K.H. Gil, H.-S. Kang, S.H. Kim, K.W. Seo, Y.J. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
  In PAL-XFEL, a 4th generation light source, the HLS (Ultrasonic-type Hydrostatic Levelling System) developed at BINP (Budker Institute of Nuclear Physics) in Russia was installed and operated in all parts of PAL-XFEL in order to maintain observations of the vertical change building floor by the ground sinking and uplifting. For this, a HLS measuring program was written using NI LabVIEW and an EPICS IOC Server was built using the CA Lab which has been developed at BESSY (Berlin Electron Storage Ring Society for Synchrotron Radiation) in Germany. The CA Lab was improved and verified in order to confirm that it could support EPICS BASE libraries V3.14.12, and EPICS CA Client and that the EPICS IOC Server could be easily constructed by CA Lab in a 64-bit LabVIEW. This made Multi-core CPU (Multi-core Processor / Multi-thread Program) resource of 64bit Computer System (64bit Hardware PC / 64bit Windows OS / 64bit LabVIEW Multi-thread Programming) to be 100 percent utilized. This study proposes a configuration process for the HLS measuring program algorithm and a building process for the EPICS IOC Server by using CA Lab.  
WEPGF116 PvaPy: Python API for EPICS PV Access software, interface, framework, monitoring 1
  • S. Veseli
    ANL, Argonne, Ilinois, USA
  As the number of sites deploying and adopting EPICS Version 4 grows, so does the need to support PV Access from multiple languages. Especially important are the widely used scripting languages that tend to reduce both software development time and the learning curve for new users. In this paper we describe PvaPy, a Python API for the EPICS PV Access protocol and its accompanying structured data API. Rather than implementing the protocol itself in Python, PvaPy wraps the existing EPICS Version 4 C++ libraries using the Boost. Python framework. This approach allows us to benefit from the existing code base and functionality, and to significantly reduce the Python API development effort. PvaPy objects are based on Python dictionaries and provide users with the ability to access even the most complex of PV Data structures in a relatively straightforward way. Its interfaces are easy to use, and include support for advanced EPICS Version 4 features such as implementation of client and server Remote Procedure Calls (RPC).  
poster icon Poster WEPGF116 [0.738 MB]  
WEPGF122 Real-Time Performance Improvements and Consideration of Parallel Processing for Beam Synchronous Acquisition (BSA) timing, real-time, linac, operation 1
  • K.H. Kim, S. Allison, T. Straumann, E. Williams
    SLAC, Menlo Park, California, USA
  Funding: Work supported by the the U.S. Department of Energy, Office of Science under Contract DE-AC02-76SF00515 for LCLS I and LCLS II.
Beam Synchronous Acquisition (BSA) provides a common infrastructure for aligning data to each individual beam pulse, as required by the Linac Coherent Light Source (LCLS). BSA allows 20 independent acquisitions simultaneously for the entire LCLS facility and is used extensively for beam physics, machine diagnostics and operation. BSA is designed as part of LCLS timing system and is currently an EPICS record based implementation, allowing timing receiver EPICS applications to easily add BSA functionality to their own record processing. However, the non-real-time performance of EPICS record processing and the increasing number of BSA devices has brought real-time performance issues. The major reason for the performance problem is likely due to the lack of separation between time-critical BSA upstream processing and non-critical downstream processing. BSA is being improved with thread level programming, breaking the global lock in each BSA device, adding a queue between upstream and downstream processing, and moving out the non-critical downstream to a lower priority worker thread. The use of multiple worker threads for parallel processing in SMP systems is also being investigated.
poster icon Poster WEPGF122 [1.665 MB]  
WEPGF124 Application Using Timing System of RAON Accelerator timing, controls, FPGA, Linux 1
  • S. Lee, H. Jang, C.W. Son
    IBS, Daejeon, Republic of Korea
  Funding: This work is supported by the Rare Isotope Science Project funded by Ministry of Science, ICT and Future Planning(MSIP) and National Research Foundation(NRF) of Korea(Project No. 2011-0032011).
RAON is a particle accelerator to research the interaction between the nucleus forming a rare isotope as Korean heavy-ion accelerator. RAON accelerator consists of a number of facilities and equipments as a large-scaled experimental device operating under the distributed environment. For synchronization control between these experimental devices, timing system of the RAON uses the VME-based EVG/EVR system. In order to test the high-speed performance of the control logic with the minimized event signal delay, it is planned to establish the step motor controller testbed applying the FPGA chip. The testbed controller will be configured with Zynq 7000 series of Xilinx FPGA chip. Zynq as SoC (System on Chip) is divided into PS (Processing System) with PL (Programmable Logic). PS with the dual-core ARM cpu is performing the high-level control logic at run-time on linux operating system. PL with the low-level FPGA I/O signal interfaces with the step motor controller with the event signal received from timing system. This paper describes the content and performance evaluation obtained from the step motor control through the various synchronized event signal received from the timing system.
poster icon Poster WEPGF124 [1.690 MB]  
WEPGF132 An Update on CAFE, a C++ Channel Access Client Library, and its Scripting Language Extensions interface, controls, operation, network 1
  • J.T.M. Chrin
    PSI, Villigen PSI, Switzerland
  CAFE (Channel Access interFacE) is a C++ client library that offers a comprehensive and easy-to-use Channel Access (CA) interface to the Experimental Physics and Industrial Control System (EPICS). The code base has undergone significant refactoring to make the internal structure more comprehensible and easier to interpret, and further methods have been implemented to increase its flexibility in readiness to serve as the CA host in fourth-generation and scripting languages for use at the SwissFEL, Switzerland's X-ray Free-Electron Laser facility. A number of specific design features are presented, including policies that provide control over configurable components that govern the behaviour of interactions, and the methodology that guarantees that the outcome of all remote method invocations are captured with integrity in every eventuality, thereby ensuring reliability and stability. An account is also given on newly created bindings for the Cython programming language, which offers a major performance improvement to Python developers, and on an update to CAFE's MATLAB Executable (MEX) file.  
poster icon Poster WEPGF132 [0.297 MB]  
WEPGF154 Visualization of Interlocks with EPICS Database and EDM Embedded Windows controls, interlocks, database, PLC 1
  • E. Tikhomolov
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  The control system for TRIUMF's upgraded secondary beam line M20 was implemented by using a PLC and one of many EPICS IOCs running on a multi-core Dell server. Running the IOC on a powerful machine rather than on a small dedicated computer has a number of advantages such as fast code execution and the availability of a large amount of memory. A large EPICS database can be loaded into the IOC and used for visualization of the interlocks implemented in the PLC. The information about interlock status registers, text messages, and the names of control and interlock panels are entered into a relational database by using a web browser. Top-level EPICS schematics are generated from the relational database. For visualization the embedded windows available in the Extensible Display Manager (EDM) are the EPICS clients, which retrieve interlock status information from the EPICS database. A set of interlock panels is the library, which can be used to show any chains of interlocks. If necessary, a new interlock panel can be created by using the visualization tools provided with EDM. This solution, in use for more than 3 years, has proven to be reliable and very flexible.  
poster icon Poster WEPGF154 [1.155 MB]  
THHA3O02 Status of the Continuous Mode Scan for Undulator Beamlines at BESSY II undulator, controls, feedback, diagnostics 1
  • A.F. Balzer, E. Schierle, E. Suljoti, M. Witt
    HZB, Berlin, Germany
  • R. Follath
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  At the synchrotron light source BESSY II monochromator (MONO) and insertion device (ID) scans can be done synchronized in two different modes. In step mode MONO and ID move independently to intermediate target positions of an energy scan. In continuous mode (CM) MONO and ID cover the whole range of the scan nonstop in a coupled motion. Data acquisition is done continuously at the speed provided by the CM scan and is available in regular user operation. Currently CM is in operation at 11 undulator beamlines at BESSY II. 3 new beamlines requesting CM are under construction. During CM the MONO EPICS IOC acts as a controller forcing the MONO optics to follow the movement of the ID. A non-linear predictive control scheme is used to implement this dynamic coupling. The controller task utilizes polynomial regression to extrapolate the ID motion. Calculation of the trajectories for MONO grating and mirror is based on bijective gap to energy lookup tables and the grating equation. In this paper the technical implementation, limitations, recently developed diagnostic methods, and future plans for improvements are presented.  
slides icon Slides THHA3O02 [0.898 MB]  
THHB3O01 Mapping Developments at Diamond detector, software, interface, controls 1
  • R.D. Walton, A. Ashton, M. Basham, P. C. Y. Chang, T.M. Cobb, A.J. Dent, J. Filik, M.W. Gerring, C. Mita, C.M. Palmer, U.K. Pedersen, P.D. Quinn, N.P. Rees, S. da Graca
    DLS, Oxfordshire, United Kingdom
  Many synchrotron beamlines offer some form of continuous scanning for either energy scanning or sample mapping. However, this is normally done on an ad-hoc beamline by beamline basis. Diamond has recently embarked on an ambitious project to define how to implement continuous scanning as the standard way of doing virtually all mapping tasks on beamlines. The project is split into four main areas: 1) User interfaces to describe the mapping process in a scientifically relevant way, generating a scan description that can be used later; 2) The physical process of scanning and coordinating hardware motion and detector data capture across the beamline; 3) Capture of the detector data and all the associated meta-data to disk. Deciding and describing the layout of the file (or files) for the main use cases; 4) Display and analysis of live data and display of processed data. In order to achieve this common approach across beamlines, the standard software used throughout the facility (Delta Tau motor controllers, EPICS, GDA and DAWN), has been built on.  
slides icon Slides THHB3O01 [1.922 MB]  
THHB3O03 On-the-Fly Scans for Fast Tomography at LNLS Imaging Beamline controls, experiment, network, interface 1
  • G.B.Z.L. Moreno, R. Bongers, M.B. Cardoso, F.P. O'Dowd, H.H. Slepicka
    LNLS, Campinas, Brazil
  Funding: Brazilian Synchrotron Light Laboratory.
As we go to brighter light sources and time resolved ex-periments, different approaches for executing faster scans in synchrotrons are an ever­present need. In many light sources, performing scans through a sequence of hardware triggers is the most commonly used method for synchronizing instruments and motors. Thus, in order to provide a sufficiently flexible and robust solution, the X­Ray Imaging Beamline (IMX) at the Brazilian Synchrotron Light Source [1] upgraded its scanning system to a NI PXI chassis interfacing with Galil motion controllers and EPICS environment. It currently executes point­to­point and on­the­fly scans controlled by hard-ware signals, fully integrated with the beamline control system under EPICS channel access protocol. Some approaches can use CS­Studio screens and automated Python scripts to create a user­friendly interface. All pro-gramming languages used in the project are easy to use and to learn, which allows high maintainability for the system delivered. The use of LNLS Hyppie platform [2, 3] also enables software modularity for better compatibil-ity and scalability over different experimental setups and even different beamlines.
[1]F. P. O'Dowd et al.,"X-Ray micro-tomography at the IMX beamline (LNLS)", XRM2014.[2]J. R. Piton et al.,"Hyppie: A hypervisored PXI for physics instrumentation under EPICS", BIW2012.
slides icon Slides THHB3O03 [3.587 MB]  
THHC3O03 Effortless Creation of Control & Data Acquisition Graphical User Interfaces with Taurus TANGO, controls, GUI, interface 1
  • C. Pascual-Izarra, G. Cuní, C.M. Falcón Torres, D. Fernandez-Carreiras, Z. Reszela, M. Rosanes Siscart
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • T.M. Coutinho
    ESRF, Grenoble, France
  Creating and supporting Graphical User Interfaces (GUIs) for experiment control and data acquisition has traditionally been a major drain of time and resources for laboratories. GUIs often need to be adapted to new equipment or methods, but typical users lack the technical skills to perform the required modifications, let alone to create new GUIs. Here we present the Taurus* framework which allows a non-programmer to create a fully-featured GUI (with forms, plots, synoptics, etc) from scratch in a few minutes using a "wizard" as well as to customize and expand it by drag-and-dropping elements around at execution time. Moreover, Taurus also gives full control to more advanced users to access, create and customize a GUI programmatically using Python. Taurus is a free, open source, multi-platform pure Python module (it uses PyQt for the GUI). Its support and development are driven by an active and welcoming community participated by several major laboratories and companies which use it for their developments. While Taurus was originally designed within the Sardana** suite for the Tango*** control system, now it can also support other control systems (even simultaneously) via plug-ins.
* Taurus Home Page:** Sardana Home Page:*** Tango Home Page:
slides icon Slides THHC3O03 [23.180 MB]  
FRA3O01 Past, Present and Future of the ASKAP Monitoring and Control System controls, monitoring, software, hardware 1
  • M. Marquarding
    CASS, Epping, Australia
  The Australian Square Kilometre Array Pathfinder (ASKAP) is CSIRO's new radio telescope currently under construction and commissioning at the Murchison Radio-astronomy Observatory (MRO) in the Mid West region of Western Australia. The first six antennas equipped with the first generation (or Mark-I) Phased Array Feeds (PAF) have been in commissioning since 2013. Twelve of the second generation (Mark-II) PAFs are expected to hit the ground late this year leading into the start of the Early Science program. This paper will present the current status of the ASKAP project, including some exciting results coming from the commissioning activities. This will encompass the status of the monitoring and control system, named the Telescope Operating System (TOS), future developments and some of the lessons learned during the early stages of the integration and commissioning phase.  
FRB3O01 Commissioning of the TPS Control System controls, interface, power-supply, Ethernet 1
  • C.Y. Liao, Y.-T. Chang, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Huang, C.H. Kuo, D. Lee, C.-J. Wang, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
  Con¬trol sys¬tem for the Tai¬wan Pho¬ton Source (TPS) has been completed in 2014. Com¬missioning of the accelerator system is in proceeding. Electron beam were stored at the stor¬age ring and emit first light in De¬cem¬ber 31, 2014. TPS con¬trol sys¬tem adopts EPICS toolk¬its as its frame¬works. The sub¬sys¬tems con¬trol in¬ter¬faces in¬clude event based tim¬ing sys¬tem, Eth¬er¬net based power sup¬ply con¬trol, cor¬rec¬tor power sup¬ply con¬trol, PLC-based pulse mag¬net power sup¬ply con¬trol and ma¬chine pro¬tec¬tion system, in¬ser¬tion de¬vices mo¬tion con¬trol sys¬tem, var¬i¬ous di¬ag¬nos¬tics re¬lated con¬trol en¬vi¬ron¬ment, and etc. The stan¬dard hard¬ware com¬po¬nents had been in¬stalled and inte¬grated, and the var¬i¬ous IOCs (Input Out¬put Con¬troller) had been im¬ple¬mented as var¬i¬ous sub¬sys¬tems con¬trol platforms. Low level and high level hard¬ware and software are tested in¬ten¬sively in 2014 and final re¬vise to pre¬pare for rou¬tine op¬er¬a¬tion is under way. Ef¬forts will be sum¬ma¬rized at this paper.  
FRB3O02 Status of the European Spallation Source Control System controls, neutron, operation, software 1
  • T. Korhonen, R. Andersson, F. Bellorini, S.L. Birch, D.P. Brodrick, H. Carling, J. Cereijo García, R.N. Fernandes, L. Fernandez, B. Gallese, S.R. Gysin, E. Laface, N. Levchenko, M. Mansouri Sharifabad, R. Mudingay, A. Nordt, D. Paulic, D.P. Piso, K. Rathsman, M. Reščič, G. Trahern, M. Zaera-Sanz
    ESS, Lund, Sweden
  • N. Claesson, U. Rojec, K. Strniša, A.A. Söderqvist
    Cosylab, Ljubljana, Slovenia
  The European Spallation Source (ESS) is a collaboration of 17 European countries to build the world's most powerful neutron source for research. ESS has entered the construction phase and the plan is to produce first neutrons by 2019 and to complete the construction by 2025. The Integrated Control System Division (ICS) is responsible to provide control systems for the whole facility. The unprecented beam power of 5 MW and the construction of the facility with many components contributed in-kind presents a number of challenges to the control system. Systems have to be specified so that the work can be effectively shared between the contributors and on-site staff. Control system components need to provide a level of performance that can support the operation of the facility, be standardized so that integration to the facility can be done during a short installation period and be maintainable by the in-house staff after the construction has finished. This paper will outline the plans and principles that will be used to construct the control systems. The selected technologies and standards will be presented, as well as the plans for integration.