Keyword: operation
Paper Title Other Keywords Page
MOB3O04 The Construction Status of the SuperKEKB Control System controls, timing, EPICS, interface 1
  • M. Iwasaki, A. Akiyama, K. Furukawa, H. Kaji, T. Naito, T.T. Nakamura, J.-I. Odagiri, S. Sasaki
    KEK, Ibaraki, Japan
  • T. Aoyama, M. Fujita, T. Nakamura, K. Yoshii
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • K. Asano, M. Hirose
    KIS, Ibaraki, Japan
  • Y. Iitsuka, N. Yoshifuji
    EJIT, Hitachi, Ibaraki, Japan
  SuperKEKB is the upgrade of KEKB, the asymmetric energy electron-positron collider for the B-factory experiment in Japan. It aims at the 40-times higher luminosity than the world record by KEKB. The KEKB control system has been built based on EPICS at the equipment layer and scripting languages at the operation layer. The SuperKEKB control system continues to employ these frameworks while we implement new features for the successful operation at such a high luminosity. As the commissioning of the SuperKEKB main storage rings is scheduled to start in 2016, the construction of the control system is now in the final phase. We have upgraded and reinforced the network system, server computers and operator consoles. Most of the VME-based IOCs (I/O Controllers), which has been widely used in KEKB, are upgraded while the PLC-based IOCs are also widely introduced. The new timing system has been developed in order to handle the complicated injection scheme of the SuperKEKB accelerator complex efficiently. The new beam abort trigger system and the new beam gate control system have been developed, and so on. The construction status of the SuperKEKB accelerator control system will be presented.  
slides icon Slides MOB3O04 [11.615 MB]  
MOC3O01 Comprehensive Fill Pattern Control Engine: Key to Top-Up Operation Quality injection, controls, experiment, radiation 1
  • T. Birke, F. Falkenstern, R. Müller, A. Schälicke
    HZB, Berlin, Germany
  Funding: Work supported by BMBF and Land Berlin.
At the light source BESSY II numerous experiments as well as machine development studies benefit from a very flexible and stable fill pattern: standard operation mode comprises a multibunch train for the average users, a purity controlled high current camshaft bunch in a variable length ion clearing gap for pump/probe experiments and a mechanical pulse picking chopper, three high current bunches for femto second slicing opposite to the gap and a specific bunch close to the end of the ion clearing gap for resonant excitation pulse picking. The fill pattern generator and control software is based on a state machine. It controls the full chain from gun timing, linac pulse trains, injection and extraction elements as well as next shot predictions allowing triggering the next DAQ cycle. Architecture and interplay of the software components as well as implemented functionality with respect to hardware control, performance surveillance and reasoning of next actions, radiation protection requirements are described.
slides icon Slides MOC3O01 [3.687 MB]  
MOC3O02 PIDTUNE: A PID Autotuning Software Tool on UNICOS CPC controls, framework, cryogenics, PLC 1
  • E. Blanco Vinuela, B. Bradu, R. Marti Martinez
    CERN, Geneva, Switzerland
  • R. Mazaeda, L. de Frutos, C. de Prada
    University of Valladolid, Valladolid, Spain
  PID (Proportional, integral and derivative) is the most used feedback control algorithm in the process control industry. Despite its age, its simplicity in terms of deployment and its efficiency on most of industrial processes allow this technique to still have a bright future. One of the biggest challenges in using PID control is to find its parameters, the so-called tuning of the controller. This may be a complex problem as it mostly depends on the dynamics of the process being controlled. In this paper we propose a tool that is able to provide the engineers a set of PID parameters in an automated way. Several auto-tuning methods, both in open and close loop, are selectable and others can be added as the tool is designed to be flexible. The tool is fully integrated in the UNICOS framework and can be used to tune multiple controllers at the same time.  
slides icon Slides MOC3O02 [2.788 MB]  
MOC3O05 NSLS-II Fast Orbit Feedback System feedback, injection, storage-ring, FPGA 1
  • Y. Tian, W.X. Cheng, L.R. Dalesio, J.H. De Long, K. Ha, L. Yu
    BNL, Upton, Long Island, New York, USA
  • W.S. Levine
    UMD, College Park, Maryland, USA
  This paper presents the NSLS-II fast orbit feedback (FOFB) system, including the architecture, the algorithm and the commissioning results. A two-tier communication architecture is used to distribute the 10kHz beam position data (BPM) around the storage ring. The FOFB calculation is carried out in field programmable gate arrays (FPGA). An individual eigenmode compensation algorithm is applied to allow different eigenmodes to have different compensation parameters. The system is used as a regular tool to maintain the beam stability at NSLS-II.  
slides icon Slides MOC3O05 [10.087 MB]  
MOC3O07 Low Level RF Control Implementation and Simultaneous Operation of Two FEL Undulator Beamlines at FLASH controls, LLRF, laser, undulator 1
  • V. Ayvazyan, S. Ackermann, J. Branlard, B. Faatz, M.K. Grecki, O. Hensler, S. Pfeiffer, H. Schlarb, Ch. Schmidt, M. Scholz, S. Schreiber
    DESY, Hamburg, Germany
  • A. Piotrowski
    FastLogic Sp. z o.o., Łódź, Poland
  The Free-Electron Laser in Hamburg (FLASH) is a user facility delivering femtosecond short radiation pulses in the wavelength range between 4.2 and 45 nm using the SASE principle. The tests performed in the last few years have shown that two FLASH undulator beamlines can deliver FEL radiation simultaneously to users with a large variety of parameters such as radiation wavelength, pulse duration, intra-bunch spacing etc. FLASH has two injector lasers on the cathode of the gun to deliver different bunch trains with different charges, needed for different bunch lengths. Because the compression settings depend on the charge of bunches the low level RF system needs to be able to supply different compression for both beamlines. The functionality of the controller has been extended to provide intra-pulse amplitude and phase changes while maintaining the RF field amplitude and the phase stability requirements. The RF parameter adjustment and tuning for RF gun and accelerating modules can be done independently for both laser systems. Having different amplitudes and phases within the RF pulse in several RF stations simultaneous lasing of both systems has been demonstrated.  
slides icon Slides MOC3O07 [4.640 MB]  
MOD3I01 Bayesian Reliability Model for Beam Permit System of RHIC at BNL hardware, framework, collider, factory 1
  • P. Chitnis
    Stony Brook University, Stony Brook, New York, USA
  • K.A. Brown
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Bayesian Analysis provides a statistical framework for updating prior knowledge as observational evidence is acquired. It can handle complex and realistic models with flexibility. The Beam Permit System (BPS) of RHIC plays a key role in safeguarding against the faults occurring in the collider, hence directly impacts RHIC availability. Earlier a multistate reliability model* was developed to study the failure characteristics of the BPS that incorporated manufacturer and military handbook data. Over the course of its 15 years of operation, RHIC has brought forth operational failure data. This work aims towards the integration of earlier reliability calculations with operational failure data using Bayesian analysis. This paper discusses the Bayesian inference of the BPS reliability using a two-parameter Weibull survival model, with unknown scale and shape parameters. As the joint posterior distribution for Weibull with both parameters unknown is analytically intractable, the Markov Chain Monte Carlo methodology with Metropolis-Hastings algorithm is used to obtain the inference. Selection criteria for the Weibull distribution, prior density and hyperparameters are also discussed.
*P. Chitnis et al., 'A Monte Carlo Simulation Approach to the Reliability Modeling of the Beam Permit System of Relativistic Heavy Ion Collider (RHIC) at BNL', Proc. of ICALEPCS'13, San Francisco, CA.
slides icon Slides MOD3I01 [3.929 MB]  
MOD3O02 Continuous Delivery at SOLEIL software, controls, monitoring, Linux 1
  • G. Abeillé, A. Buteau, X. Elattaoui, S. Lê
    SOLEIL, Gif-sur-Yvette, France
  • G. Boissinot
    ZENIKA, Paris, France
  IT Department of Synchrotron SOLEIL* is structured along of a team of software developers responsible for the development and maintenance of all software from hardware controls up to supervision applications. With a very heterogonous environment such as, several software languages, strongly coupled components and an increasing number of releases, it has become mandatory to standardize the entire development process through a 'Continuous Delivery approach'; making it easy to release and deploy on time at any time. We achieved our objectives by building up a Continuous Delivery system around two aspects, Deployment Pipeline** and DevOps***. A deployment pipeline is achievable by extensively automating all stages of the delivery process (the continuous integration of software, the binaries build and the integration tests). Another key point of Continuous Delivery is also a close collaboration between software developers and system administrators, often known as the DevOps movement. This paper details the feedbacks on this Continuous Delivery approach has been adopted, modifying daily development team life and give an overview of the future steps.
slides icon Slides MOD3O02 [1.882 MB]  
MOD3O04 Introducing the SCRUM Framework as Part of the Product Development Strategy for the ALBA Control System controls, software, framework, experiment 1
  • G. Cuní, F. Becheri, D. Fernandez-Carreiras, Z. Reszela, S. Rubio-Manrique
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  At Alba, the Controls Section provides the software that is needed to operate the accelerators, the beamlines and the peripheral laboratories. It covers a wide range of areas or subsystems like vacuum, motion, data acquisition and analysis, graphical interfaces, or archiving. Since the installation and commissioning phases, we have been producing the software solutions mostly in single-developer projects based on the personal criteria. This organization scheme allowed each control engineer to gain the expertise in particular areas by being the unit contact responsible to develop and deliver products. In order to enrich the designs and improve the quality of solutions we have grouped the engineers in teams. The hierarchy of the product backlogs, represents the desired features and the known defects in a transparent way. Instead of planning the whole project upfront, we try to design the products incrementally and develop them in short iterations mitigating the risk of not satisfying the emerging user requirements. This paper describes the introduction of the Scrum framework as the product development strategy in a service oriented organization like the Computing Division at Alba*.
*D. Fernández-Carreiras et al., 'Using Prince2 and ITIL Practices for Computing Project and Service Management in a Scientific Installation', TUMIB01, Proc. of ICALEPCS'13, San Francisco, CA.
slides icon Slides MOD3O04 [2.251 MB]  
MOD3O06 Interface Management for SKA Telescope Manager interface, controls, TANGO, monitoring 1
  • P.S. Swart, G.M. le Roux
    SKA South Africa, National Research Foundation of South Africa, Cape Town, South Africa
  • A. Marassi, R. Smareglia
    INAF-OAT, Trieste, Italy
  • S. Roy Chaudhuri
    Tata Research Development and Design Centre, Pune, India
  • S. Vrcic
    NRC-Herzberg, Penticton, BC, Canada
  The Square Kilometre Array (SKA) project is currently in the Pre-construction Phase. During this phase, the telescope subsystems are being designed. The Telescope Manager (TM) is a supervisory control and monitoring subsystem in each of the two radio telescopes of the SKA (SKA1-Low and SKA1-Mid). The TM interfaces with a number of diverse telescope subsystems. Interaction between TM and these subsystems is a major source of requirements for the TM. Careful management of TM external interfaces is therefore important. This discussion is a case study of TM interface management. Firstly, how system architectural design aspects like separation of concerns in the control hierarchy reduce telescope complexity with regards to interfaces is discussed. Secondly, the standardisation approach for monitoring and control interfaces to facilitate early elicitation of interface requirements for the TM, and to manage the diversity of interfacing subsystems is discussed. Thirdly, the relations between interface definition and requirements analysis activities, using SysML representations as an example is discussed.
slides icon Slides MOD3O06 [2.607 MB]  
MOM305 Control System for a Dedicated Accelerator for SACLA Wide-Band Beam Line controls, electron, experiment, database 1
  • N. Hosoda, T. Fukui
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • M. Ishii
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Ohshima, T. Sakurai, H. Takebe
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  This paper report about a control system for a dedicated accelerator for SACLA wide-band beam line (BL1), requirements, construction strategies, and present status. At the upgrade plan of SACLA BL1, it was decided to move SCSS test accelerator, which operated from 2005 to 2013, to the upstream of the BL1 in the undulator hall. The control system of the accelerator had to be operated seamlessly with SACLA, to reuse old components as much as possible, and to avoid stopping SACLA user experiments during the start up. The system was constructed with MADOCA which is already used at SACLA. In the control components, VME optical DIO cards and chassis for magnet power supplies were reused after cleaning and checking that there was no degradation of quality. The RF conditioning of the accelerator was started in in October 2014, while SACLA user experiments were going on. A data collection system was prepared, myCC, having a MADOCA compatible interface and an independent database from SACLA. It enabled efficient start up and after enough debugging, the data collection was successfully merged to SACLA in January 2015. Beam commissioning of the accelerator is planned for autumn 2015.  
slides icon Slides MOM305 [0.964 MB]  
poster icon Poster MOM305 [0.363 MB]  
MOM308 XFEL Machine Protection System (MPS) Based on uTCA linac, kicker, undulator, FPGA 1
  • S. Karstensen, M.E. Castro Carballo, J.M. Jäger, M. Staack
    DESY, Hamburg, Germany
  For the operation of a machine like the 3 km long linear accelerator XFEL at DESY Hamburg, a safety system keeping the beam from damaging components is obligatory. This machine protection system (MPS) must detect failures of the RF system, magnets, and other critical components in various sections of the XFEL as well as monitor beam and dark current losses, and react in an appropriate way by limiting average beam power, dumping parts of the macro-pulse, or, in the worst case, shutting down the whole accelerator. It has to consider the influence of various machine modes selected by the timing system. The MPS provides the operators with clear indications of error sources, and offers the possibility to mask any input channel to facilitate the operation of the machine. In addition, redundant installation of critical MPS components will help to avoid unnecessary downtime. This paper summarizes the requirements on the machine protection system and includes plans for its architecture and for needed hardware components. It will show up the clear way of configuring this system - not programming. Also a look into the financial aspects (manpower / maintenance / integration) will be presented.  
slides icon Slides MOM308 [1.487 MB]  
MOM309 Upgrade of the Beam Monitor System for Hadron Experimental Facility at J-PARC extraction, EPICS, PLC, hadron 1
  • Y. Morino, K. Agari, Y. Sato, A. Toyoda
    KEK, Tokai, Ibaraki, Japan
  Hadron experimental facility(HD hall) at Japan Proton Accelerator Research Complex (J-PARC) is designed to provide high intensity beam for particle and nuclear physics. Slow-extracted proton beam(2 second spill per 6 seconds) from main ring is injected to a production target at the HD hall. On May 2013, proton beam was instantaneously extracted to the HD hall in 5 milliseconds. The short pulse beam melted the production target. After the accident, the beam operation was stopped at the HD hall. For the recovery of the HD hall, we upgraded the beam line of the HD hall in many aspects to sustain the abnormal beam injection. The monitor system of the beam line was also upgraded to detect the abnormal beam injection. The rate monitor of second particles from the target was prepared to detect short pulse injection. The beam profile monitor was upgraded to measure at several times during one pulse to detect a sudden change of the beam profile. The beam loss monitor was upgraded to read out always to detect unexpected high intensity beam promptly. These signals were included in the interlock system. In this paper, the detail of the beam monitor system upgrade will be reported.  
slides icon Slides MOM309 [1.980 MB]  
MOM311 ALMA Release Management: A Practical Approach software, hardware, controls, site 1
  • R. Soto, N. Saez, T.C. Shen
    ALMA Observatory, Santiago, Chile
  • J.P.A. Ibsen
    ESO, Santiago, Chile
  The ALMA software is a large collection of modules, which implements the functionality needed for the observatory day-to-day operations. The main ALMA software components include: array/antenna control/correlator, submission/processing of science proposals, telescope calibration and data archiving. The implementation of new features and improvements for every software subsystem must be coordinated by considering developers schedule, observatory milestones and testing resources available to verify new software. This paper describes the software delivery process adopted by ALMA since the construction phase and its evolution until these days. It also presents the acceptance procedure implemented by the observatory for validating the software used for science operations. Main roles of the software delivery and acceptance processes are mentioned on this paper by including their responsibility at the different development and testing phases. Finally, some ideas are presented about how the model should change in the near future by considering the operational reality of ALMA Observatory.  
slides icon Slides MOM311 [3.471 MB]  
poster icon Poster MOM311 [16.924 MB]  
MOPGF008 Embedded Environment with EPICS Support for Control Applications EPICS, controls, interface, Ethernet 1
  • Y.-S. Cheng, K.T. Hsu, C.H. Huang, D. Lee, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
  System on a chip (SoC) is widely used in embedded environment. Current generation SoC commercial products with small footprint and low-cost have powerful in CPU performance and rich interface solution to support many control applications. To deal with some embedded control applications, the "Banana Pi" which is a card-size single-board computer and runs Linux-based operation system has been adopted as the EPICS IOC to implement several applications. The efforts for implementing are summarized in this paper.  
poster icon Poster MOPGF008 [2.985 MB]  
MOPGF020 Detector and Run Control Systems for the NA62 Fixed-Target Experiment at CERN controls, hardware, experiment, detector 1
  • P. Golonka, R. Fantechi, M. Gonzalez-Berges, F. Varela
    CERN, Geneva, Switzerland
  • V. Falaleev
    JINR, Dubna, Moscow Region, Russia
  • N. Lurkin
    Birmingham University, Birmingham, United Kingdom
  • R.F. Page
    University of Bristol, Bristol, United Kingdom
  The Detector and Run Control systems for the NA62 experiment, which started physics data-taking in Autumn of 2014, were designed, developed and deployed in collaboration between the Physics and Engineering Departments at CERN. Based on the commonly used control frameworks, UNICOS and JCOP, they were developed with scarce manpower while meeting the challenge of extreme agility, evolving requirements, as well as integration of new types of hardware. This paper presents, for the first time, the architecture of these systems and discusses the challenges and experience in developing and maintaining them during the first months of operation.  
poster icon Poster MOPGF020 [4.620 MB]  
MOPGF021 Database Archiving System for Supervision Systems at CERN: a Successful Upgrade Story database, controls, experiment, cryogenics 1
  • P. Golonka, M. Gonzalez-Berges, J. Hofer, A. Voitier
    CERN, Geneva, Switzerland
  Almost 200 controls applications, in domains like LHC magnet protection, cryogenics and vacuum systems, cooling-and-ventilation or electrical network supervision, have been developed and are currently maintained by the CERN Industrial Controls Group in close collaboration with several equipment groups. The supervision layer of these systems is based on the same technologies as 400 other systems running in the LHC Experiments (e.g. WinCC Open Architecture, Oracle). During the last two-year LHC Long Shutdown 1, the 200 systems have been successfully migrated from a file-based archiver to a centralized infrastructure based on Oracle databases. This migration has homogenized the archiving chain for all CERN systems, and at the same time has presented a number of additional challenges. The paper presents the design, the necessary optimizations and the migration process that allowed us to meet unprecedented data-archiving rates (unachievable for the previously used system), and liaise with the existing long-term storage system (LHC LoggingDB) to assure data-continuity.  
poster icon Poster MOPGF021 [3.505 MB]  
MOPGF022 SIS18 Upgrade: The FAIR Compliant Renovation of the Data Acquisition System for Particle Detectors hardware, controls, detector, synchrotron 1
  • R. Haseitl, H. Bräuning, T. Hoffmann, K. Lang, T. Milosic
    GSI, Darmstadt, Germany
  In preparation of FAIR, several well-established beam instrumentation systems of the GSI heavy-ion synchrotron SIS18 and its connected high-energy beam transfer lines (HEBT) have to be modernized. In this contribution, the data acquisition upgrade of particle detectors such as ion chambers and plastic scintillators is described. This covers the replacement of an outdated custom-built readout- and control hardware by modern FMC (FPGA mezzanine card) based I/O hardware, new multi-channel high voltage power supplies and a new data acquisition system (DAQ) for the VME based scalers. The latter will replace the old Kylix-based ABLASS software by LASSIE (Large Analog Signal and Scaling Information Environment) to fit into the new FAIR control system concept. LASSIE is based on FESA (Front End Software Architecture). FESA was originally developed by CERN and enhanced by GSI-specific modifications. Furthermore, the new particle detector DAQ will be able to take full advantage of the new FAIR timing system which is based on the White Rabbit protocol.  
poster icon Poster MOPGF022 [1.194 MB]  
MOPGF029 Personnel Protection System Upgrade for the LCLS Electron Beam Linac linac, PLC, EPICS, hardware 1
  • C. Cyterski, E.P. Chin
    SLAC, Menlo Park, California, USA
  As facilities age and evolve, constant effort is needed in upgrading control system infrastructure; this applies to all aspects of an accelerator facility. Portions of the Personnel Protection System of the Linac Coherent Light Source are still relying on a legacy, relay-based Safety System. An upgrade is underway to modernize these systems using Siemens S7-300 Safety PLCs and Pilz PNOZMulti programmable controllers. The upgrade will be rolled out over multiple years requiring the implementation to be fully compatible with adjacent legacy system while setting the foundation for the new generation system. The solution relies on a modularized safety system which can be deployed in a short time (1 month) while being flexible enough to adapt to the evolving needs over the next 20 years.  
poster icon Poster MOPGF029 [0.274 MB]  
MOPGF030 Upgrade of the Control and Interlock Systems for the Magnet Power Supplies in T2K Primary Beamline controls, PLC, EPICS, proton 1
  • K. Nakayoshi, Y. Fujii, K. Sakashita
    KEK, Tsukuba, Japan
  T2K is a long-baseline neutrino oscillation experiment at J-PARC in Japan. High intensity neutrino/antineutrino beam is generated and propagates 295km to Super-Kamiokande. High intensity proton beam, 350 kW in May 2015, is extracted from Main Ring synchrotron, guided through a primary proton beamline to a graphite target using normal-conducting (NC) magnets and super-conducting combined-function magnets. In October 2014, we replaced all the power supplies (PSs) for NC magnets with newly developed PSs. We also developed new control system based on EPICS and PLCs, putting emphasis on the safe operation of power supplies, and integrated it into the existing interlock system. Consequently the latency time for the interlock system was improved. We report the actual implementation and operation results of these developments.  
MOPGF035 Control System Status of SuperKEKB Injector Linac network, EPICS, status, controls 1
  • M. Satoh, K. Furukawa, K. Mikawa, F. Miyahara, Y. Seimiya, T. Suwada
    KEK, Ibaraki, Japan
  • K. Hisazumi, T. Ichikawa, T. Kudou, S. Kusano, Y. Mizukawa
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • H.S. Saotome, M. Takagi
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
  Toward SuperKEKB project, the injector linac upgrade is ongoing for aiming at the stable electron/positron beam operation with low emittance and high intensity bunch charge. To obtain such high quality beam, we have being commissioning many newly developed subsystems including a low emittance photocathode rf gun since October of 2013. Eventually, we will perform the simultaneous top-up for the four independent storage rings including two light sources. The stable beam operation as long as possible is desired since the prospective physics results strongly depends on the reliability and availability of accelerator operation. Since the middle stage of KEKB project, the injector linac control system has been gradually transferred to the EPICS based one from the in-house system based on RPC. We are expanding the existing control system for the newly installed devices like a network attached power supply, timing jitter monitoring system, and so on. In addition, many commissioning tools are now under development to accelerate the high quality beam development. In this paper, we will describe the present status of injector linac control system and future plan in detail.  
poster icon Poster MOPGF035 [1.139 MB]  
MOPGF039 TIP: An Umbrella Application for all SCADA-Based Applications for the CERN Technical Infrastructure controls, laser, interface, framework 1
  • F. Varela, Ph. Gayet, P. Golonka, M. Gonzalez-Berges, J. Pache, P. Sollander
    CERN, Geneva, Switzerland
  • L. Goralczyk
    AGH University of Science and Technology, Kraków, Poland
  The WinCC Open Architecture (OA) SCADA package and the controls frameworks (UNICOS, JCOP) developed at CERN were successfully used to implement many critical control systems at CERN. In the recent years, the supervision and the controls of many technical infrastructure systems (electrical distribution, cooling and ventilation, etc.) were rewritten to use this standard environment. Operators at the Technical Infrastructure desk, who monitor these systems, are forced to continuously switch between the applications that allow them to monitor these infrastructure systems. The Technical Infrastructure Portal (TIP) was designed and is being developed to provide centralized access to all technical infrastructure systems and extend their functionality by linking to a powerful localization system based on GIS. Furthermore, it provides an environment for operators to develop views that aggregate data from different sources, like cooling and electricity.  
poster icon Poster MOPGF039 [1.392 MB]  
MOPGF040 Keck Telescope Control System Upgrade controls, software, hardware, network 1
  • K.T. Tsubota, J.A. Mader
    W.M. Keck Observatory, Kamuela,, Hawaii, USA
  The Keck telescopes, located at one of the world's premier sites for astronomy, were the first of a new generation of very large ground-based optical/infrared telescopes with the first Keck telescope beginning science operations in May of 1993, and the second in October of 1996. The components of the telescopes and control systems are more than 15 years old. The upgrade to the control systems of the telescopes consists of mechanical, electrical, software and network components with the overall goals of improving performance, increasing reliability, addressing serious obsolescence issues and providing a knowledge refresh. This paper is a continuation of one published at the 2013 conference and will describe the current status of the control systems upgrade. It will detail the implementation and testing for the Keck II telescope, including successes and challenges met to date. Transitioning to nighttime operations will be discussed, as will implementation on the Keck I telescope.  
poster icon Poster MOPGF040 [3.444 MB]  
MOPGF045 MEBT and D-Plate Control System Status of the Linear IFMIF Prototype Accelerator controls, EPICS, quadrupole, diagnostics 1
  • J. Calvo, D. Jimenez-Rey, E. Molina Marinas, J. Molla, I. Podadera
    CIEMAT, Madrid, Spain
  Funding: This work has been partially funded by the Spanish Ministry of Economy and Competitiveness, under projects OPTIMHAC FIS2013-40860-R and IFMIF-EVEDA II. Ref: AIC-A-2011-0654.
Linear IFMIF* Prototype Accelerator (LIPAc), Rokkasho, Japan, comprises a succession of devices and systems that accelerate a deuteron beam up to 9 MeV with a current of 125 mA, generating a power of 1.125 MW, and transport it up to a beam dump. The beam power becomes critical from the point of view of losses; even tiny losses must be avoided. This fact, and the complexity of the accelerator operation, requires a coherent strategy when designing, commissioning and optimizing the accelerator control system, specifically focused in the control systems of the Medium Energy Beam Transport (MEBT) and the Diagnostic Plate (DP, a movable set of diagnostics). Both systems are essential to validate the performance of the accelerator and particularly the ion source, Radio Frequency (RF) and Radio Frequency Quadrupole (RFQ) systems. This contribution will describe the recent advances in the control architectures and the EPICS based developments achieved in MEBT for the motion control of bunchers and scrapers, control of the power supplies in quadrupoles and steerers, and refrigeration and vacuum. Besides, control of fluorescence profile monitors (FPMs) in the D-Plate is displayed.
*IFMIF, the International Fusion Materials Irradiation Facility, is an accelerator-based neutron source that will use Li (d, xn) reactions to generate a flux of neutrons with a broad peak at 14 MeV.
poster icon Poster MOPGF045 [1.333 MB]  
MOPGF066 Synchronized Ramping of Magnet Power Supplies for Streamlined Operation at Energy Recovery Linac (ERL) and Electron Lens (e-Lens) solenoid, software, electron, controls 1
  • P. K. Kankiya, J.P. Jamilkowski, T. Samms
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Synchronous ramping of an assembly of magnets is critical for operation of beam in an accelerator. Magnet currents must remain within the operational limits to avoid dis-alignment of electron beam. In order to comply with the design specifications of ERL and ELENS project , two different software control mechanisms have been developed. The ramp profile is automated and maintained by tracking current in all dipole magnets at ERL and superconducting solenoid magnets at ELENS. This mechanism speeds up operations and adds a level of protection. The purpose of this application is to reduce unnecessary interlocks of the personnel protection system. This paper will describe the power supply arrangement, communication mechanism and the state machine algorithm used for feedback and control. A report on operating experience will be presented.
poster icon Poster MOPGF066 [1.966 MB]  
MOPGF067 MeerKAT Control and Monitoring System Architecture controls, interface, monitoring, network 1
  • N. Marais
    SKA South Africa, National Research Foundation of South Africa, Cape Town, South Africa
  Funding: SKA South Africa, National Research Foundation of South Africa, Department of Science and Technology.
The 64-dish MeerKAT radio telescope, currently under construction, comprises several loosely coupled independent subsystems, requiring a higher level Control and Monitoring (CAM) system to operate as a coherent instrument. Many control-system architectures are bus-like, clients directly \mbox{receiving} monitoring points from Input/Output Controllers; instead a multi-layer architecture based on point-to-point Karoo Array Telescope Control Protocol (KATCP) connections is used for MeerKAT. Clients (e.g. operators or scientists) only communicate directly with the outer layer of the telescope; only telescope interactions required for the given role are exposed to the user. The layers, interconnections, and how this architecture is used to meet telescope system requirements are described. Requirements include: Independently controllable telescope subsets; dynamically allocating telescope resources to individual users or observations, preventing the control of resources not allocated to them; commensal observations sharing resources; automatic detection of, and responses to, system-level alarm events; high level operator controls and health displays; automatic execution of scheduled observations.
poster icon Poster MOPGF067 [60.299 MB]  
MOPGF072 Hot Checkout for 12 GeV at Jefferson Lab status, database, software, hardware 1
  • R.J. Slominski, T. L. Larrieu
    JLab, Newport News, Virginia, USA
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to this manuscript.
A new hot checkout process was implemented at Jefferson Lab for the upgraded 12 GeV accelerator. The previous process proved insufficient in the fall of 2011 when a fire broke out in a septa magnet along the beam line due to a lack of communication about the status of systems. The improved process provides rigorous verification of system readiness thus protecting property while minimizing program delays. To achieve these goals, a database and web application were created to maintain an accurate list of machine components and coordinate and record verification checks by each responsible group. The process requires groups to publish checklists detailing each system check to encourage good work practice. Within groups, the process encourages two independent checks of each component: the first by a technician, and a second by the group leader. Finally, the application provides a dashboard display of checkout progress for each system and beam destination of the machine allowing for informed management decisions. Successful deployment of the new process has led to safe and efficient machine commissioning.
poster icon Poster MOPGF072 [3.862 MB]  
MOPGF077 Drift Control Engines Stabilize Top-Up Operation at BESSY II feedback, controls, injection, experiment 1
  • T. Birke, F. Falkenstern, R. Müller, A. Schälicke
    HZB, Berlin, Germany
  Funding: Work supported by BMBF and Land Berlin.
Full stability potential of orbit and bunch-by-bunch-feedback controlled top-up operation becomes available to the experimental users only if the remaining slow drifts of essential operational parameters are properly compensated. At the light source BESSY II these are the transversal tunes as well as the path length and energy. These compensations are realized using feedback control loops together with supervising state machines. Key to the tune control is a multi-source tune determination algorithm. For the path length correction empirical findings are utilized. All involved software systems and data-paths are sketched.
poster icon Poster MOPGF077 [2.003 MB]  
MOPGF079 European XFEL Cavities Piezoelectric Tuners Control Range Optimization cavity, controls, LLRF, linac 1
  • W. Cichalewski, A. Napieralski
    TUL-DMCS, Łódź, Poland
  • J. Branlard, Ch. Schmidt
    DESY, Hamburg, Germany
  The piezo based control of the superconducting cavity tuning has been under the development over last years. Automated compensation of Lorentz force detuning of FLASH and European X-FEL resonators allowed to maintain cavities in resonance operation even for high acceleration gradients (in range of 30 MV/m). It should be emphasized that cavity resonance control consists of two independent subsystems. First of all the slow motor tuner based system can be used for slow, wide range mechanical tuning (range of hundreds of kHz). Additionally the piezo tuning system allows for fine, dynamic compensation in a range of ~1 kHz. In mentioned pulse mode experiments (like FLASH), the piezo regulation budget should be preserved for in-pulse detuning control. In order to maintain optimal cavity frequency adjustment capabilities slow motor tuners should automatically act on the static detuning component at the same time. This paper presents work concerning development, implementation and evaluation of automatic superconducting cavity frequency control towards piezo range optimization. FLASH and X-FEL dedicated cavities tuning control experiences are also summarized.  
poster icon Poster MOPGF079 [0.932 MB]  
MOPGF080 Control System of RF Stations for NICA Booster controls, booster, interface, Ethernet 1
  • G.A. Fatkin, A.M. Batrakov, I.V. Ilyin, M.Yu. Vasilyev
    BINP SB RAS, Novosibirsk, Russia
  • G.A. Fatkin
    NSU, Novosibirsk, Russia
  NICA (Nuclotron based Ion Collider fAcility) is an accelerator complex, which is being built in JINR (Dubna, Russia). The system described in this paper is controlling the RF stations of booster, the first element of the NICA complex. The two devices are parts of the Control System: Intellectual Controller and Tester module. The first one is designed for precise measurement of magnetic field, generation of the acceleration frequency in accordance with measured field and control RF power and pre-amplifiers. Intellectual Controller is a real-time feed-forward system with 20 ums loop time. It is based on ARM microcontroller and bare-metal control programs are used to reach maximum performance. Approaches that were used to achieve maximum performance are elaborated and presented in this paper. The second part of system - Tester is a simulator for tuning and checking the RF stations before start of operations or in absence of real accelerator. The achieved accuracy in chain 'magnetic field' - 'acceleration frequency' is better than 5*10-5. Plans on feedback incorporation to stabilize ion beam behavior via frequency and phase tuning are discussed.  
poster icon Poster MOPGF080 [15.316 MB]  
MOPGF104 Consolidations on the Vacuum Controls of the CERN Accelerators, During the First Long Shutdown of the LHC controls, PLC, vacuum, injection 1
  • P. Gomes, F. Antoniotti, F. Aragon, F. Bellorini, S. Blanchard, J-P. Boivin, N. Chatzigeorgiou, F. Daligault, R. Ferreira, J. Fraga, J. Gama, A. Gutierrez, P. Krakówski, H.F. Pereira, G. Pigny, P.P. Prieto, B. Rio, H. Vestergard
    CERN, Geneva, Switzerland
  • L. Kopylov, S. Merker, M.S. Mikheev
    IHEP, Moscow Region, Russia
  For two years (Spring 2013 - Spring 2015), the LHC went through its first long shutdown (LS1). It was mainly motivated by the consolidation of magnet interconnects, to allow operation with 6.5 TeV proton beams. Moreover, around the accelerator complex, many other systems were repaired, consolidated or upgraded, and several new installations came to life. The standardization of vacuum controls has progressed in the injectors, with the renovation of most of their obsolete equipment. In the LHC, many new instruments were added, the signal transmission integrity was improved, and the exposure to radiation was reduced in critical places. Several developments were needed for new equipment types or new operational requirements.  
poster icon Poster MOPGF104 [16.017 MB]  
MOPGF110 Design Strategies in the Development of the Italian Single-dish Control System software, controls, interface, Ethernet 1
  • A. Orlati, M. Bartolini, S. Righini
    INAF - IRA, Bologna, Italy
  • M. Buttu, A. Fara, C. Migoni, S. Poppi
    INAF - OAC, Selargius (CA), Italy
  The Italian National Institute for Astrophysics (INAF) manages three radio telescopes: the Medicina and Noto dishes and the newly-built SRT. In order to make their capabilities more valuable to the scientific community, we started the DISCOS (Development of the Italian Single-dish COntrol System) project. DISCOS is implemented according to a distributed Component-Container model and hides to the users the differences among the telescopes by presenting the same user interface and the same data format. The complexity of coping with three heterogeneous instruments was handled designing a software development infrastructure with a wide monolithic codebase (libraries, components and generic interfaces), which is completely shared among the three product lines. This design permits to produce new software components with a minimum effort and to set up the same test suites for all the environments, thus leading to an affordable development and maintenance process. In this paper we illustrate the design strategies and the development techniques used to realize and optimize this common control software. We also provide a description of the project status and future plans.
*G. Grueff, et al., "Sardinia Radio Telescope: the new Italian project", Proc. of SPIE Ground based Telescopes, (2004), 5489, 773.
poster icon Poster MOPGF110 [15.982 MB]  
MOPGF117 The Control System for Trim-Coil Relay-Selectors in J-PARC MR controls, EPICS, power-supply, PLC 1
  • K.C. Sato, N. Kamikubota, N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • S. Igarashi
    KEK, Ibaraki, Japan
  • S.Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
  In J-PARC main ring, each of the main magnets (Dipole, Quadrupole, and Sextupole) has a trim-coil. The basic aim of trim-coil is to correct small deviation of each magnetic field. In addition, we have used them for other purposes, for example: (1) in Beam-Based-Alingnment studies, (2) as flux monitors, and (3) to make a short-circuit to reduce ripples of magnetic field. At a moment, trim-coils can be used for only one purpose. Relay-switches were introduced to change trim-coil connection to a device, which corresponds to the selected purpose. When the purpose is switched, 1,200 on-site relays have to be changed manually, distributed in three buildings. Thus, a control system for trim-coil relay-selectors was developed in winter, 2014-2015. EPICS tools and environment are used to develop the system. The system comprises PLC I/O modules with controller running EPICS on Linux. The system will be in operation after March, 2015. By using the system, a much easier switching of relay-switches than before, is expected.  
poster icon Poster MOPGF117 [0.498 MB]  
MOPGF122 A Fast Interlock Detection System for High-Power Switch Protection FPGA, kicker, interface, Ethernet 1
  • P. Van Trappen, E. Carlier, S. Uyttenhove
    CERN, Geneva, Switzerland
  Fast pulsed kicker magnet systems are powered by high-voltage and high-current pulse generators with adjustable pulse length and amplitude. To deliver this power, fast high-voltage switches such as thyratrons and GTOs are used to control the fast discharge of pre-stored energy. To protect the machine and the generator itself against internal failures of these switches several types of fast interlocks systems are used at TE-ABT (CERN Technology department, Accelerator Beam Transfer). To get rid of this heterogeneous situation, a modular digital Fast Interlock Detection System (FIDS) has been developed in order to replace the existing fast interlocks systems. In addition to the existing functionality, the FIDS system will offer new functionalities such as extended flexibility, improved modularity, increased surveillance and diagnostics, contemporary communication protocols and automated card parametrization. A Xilinx Zynq®-7000 SoC has been selected for implementation of the required functionalities so that the FPGA (Field Programmable Gate Array) can hold the fast detection and interlocking logic while the ARM® processors allow for a flexible integration in CERN's Front-End Software Architecture (FESA) framework, advanced diagnostics and automated self-parametrization.  
poster icon Poster MOPGF122 [0.861 MB]  
MOPGF126 A Modified Functional Safety Method for Predicting False Beam Trips and Blind Failures in the Design Phase of the ESS Beam Interlock System diagnostics, proton, hardware, interface 1
  • R. Andersson, E. Bargalló, A. Monera Martinez, A. Nordt
    ESS, Lund, Sweden
  As accelerators are becoming increasingly powerful, the requirement of a reliable machine protection system is apparent to avoid beam-induced damage to the equipment. A missed detection of a hazard is undesirable as it could lead to equipment damage on very short time scales. In addition, the number of false beam trips, leading to unnecessary downtime, should be kept at a minimum to achieve user satisfaction. This paper describes a method for predicting and mitigating these faults, based on the architecture of the system. The method is greatly influenced by the IEC61508 standard for functional safety for the industry and implements a Failure Mode, Effects, and Diagnostics Analysis (FMEDA). It is suggested that this method is applied at an early stage in the design phase of a high-power accelerator, so that possible protection and mitigation can be suggested and implemented in the interlock system logic. The method described in this paper is currently applied at the European Spallation Source and the results follow from the analysis on the Beam Interlock System of this facility.  
MOPGF131 Interlock System for Machine Protection at ThomX Accelerator vacuum, dipole, PLC, controls 1
  • N. ElKamchi, P. Gauron, H. Monard
    LAL, Orsay, France
  ThomX is a Compton based photons source. It aims to produce a compact and directional X-rays source, with high performance, high brightness and adjustable energy*. The principal application fields are medical sciences, social technology and industry. An interlock system has been implemented for machine protection, especially to protect sensitive and essential equipment (magnets, vacuum system, etc.) during machine operation. ThomX interlock system is based on Programmable Logic Controller (PLC-Siemens S7-1500), it collects default signals from the different equipment of the machine, up to the central PLC which kills the beam, by stopping the RF or the injection, in case of problem (bad vacuum, magnets overheating, etc.). The interlock system consists of two levels. The first one is a local process, whose role is to monitor the variations of different parameters of the machine equipment, and generates a default signal in case of operation problem. The second level is the central PLC, which gathers and process all the default signals from subsystems, and stops the RF power in a very short time. Actually, the interlock system is under test, it will allow accelerator to work safely.
*C. Bruni et al.,'ThomX - Conceptual Design Report', 2009, pp.1-136.
MOPGF135 Upgrade of the Trigger Synchronisation and Distribution System of the Beam Dumping System of the Large Hadron Collider dumping, controls, kicker, hardware 1
  • N. Magnin, A. Antoine, E. Carlier, V. Chareyre, S. Gabourin, A. Patsouli, N. Voumard
    CERN, Geneva, Switzerland
  Various upgrades were performed on the Large Hadron Collider (LHC) Beam Dumping System (LBDS) during Long Shutdown 1 (LS1) at CERN, in particular to the Trigger Synchronisation and Distribution System (TSDS): A redundant direct connection from the LHC Beam Interlock System to the re-trigger lines of the LBDS was implemented, a fully redundant powering architecture was set up, and new Trigger Synchronisation Unit cards were deployed over two separate crates instead of one. These hardware changes implied the adaptation of the State Control and Surveillance System and an improvement of the monitoring and diagnosis systems, like the various Internal Post Operation Check (IPOC) systems that ensure that, after every beam dump event, the LBDS worked as expected and is 'as good as new' for the next LHC beam. This paper summarises the changes performed on the TSDS during LS1, highlights the upgrade of the IPOC systems and presents the problems encountered during the commissioning of TSDS before the LHC Run II.  
poster icon Poster MOPGF135 [0.948 MB]  
MOPGF136 ADaMS 3: An Enhanced Access Control System for CERN controls, interface, GUI, target 1
  • P. Martel, Ch. Delamare, G. Godineau, R. Nunes
    CERN, Geneva, Switzerland
  ADaMS is CERN's Access Distribution and Management System. It evaluates access authorizations to more than 400 zones and for more than 35k persons. Although accesses are granted based on a combination of training courses followed, administrative authorizations and the radio-protection situation of an individual, the policies and technicalities are constantly evolving along with the laboratory's activities; the current version of ADaMS is based on a 7 year old design, and is starting to show its limits. A new version of ADaMS (3) will allow improved coordination with CERN's scheduling and planning tools (used heavily during technical shutdowns, for instance), will allow CERN's training catalog to change without impacting access management and will simplify and reduce the administrative workload of granting access. The new version will provide enhanced self-services to end users by focusing on access points (the physical barriers) instead of safety zones. ADaMS 3 will be able to cope better with changing and new requirements, as well as the multiplication of access points. The project requires the cooperation of a dozen services at CERN, and should take 18 months to develop.  
poster icon Poster MOPGF136 [1.258 MB]  
MOPGF137 Interlock of Beam Loss at Low Energy Part of J-PARC Linac DTL, linac, detector, rfq 1
  • A. Miura, Y. Kawane, N. Kikuzawa, T. Maruta
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Miyao
    KEK, Ibaraki, Japan
  J-Parc linac has developed the output beam power by increasing of acceleration energy and the peak beam current. The beam loss is getting serious along with increasing the output beam power, however, the beam loss caused at the low energy part is difficult to detect due to the low energy radioactive emission. An interlock system has been developed to prevent from the sufficient material activation using the beam current monitors. In the system, an electrical circuit to take the beam transmission between two beam current monitors is newly designed and fabricated. This paper describes the performance of the electrical circuit and the system configuration will be introduced.  
MOPGF138 Overview and Design Status of the Fast Beam Interlock System at ESS interface, FPGA, linac, electronics 1
  • A. Monera Martinez, R. Andersson, A. Nordt, M. Zaera-Sanz
    ESS, Lund, Sweden
  • C. Hilbes
    ZHAW, Winterthur, Switzerland
  The ESS, consisting of a pulsed proton linear accelerator, a rotating spallation target designed for an average beam power of up to 5 MW, and a suite of neutron instruments, requires a large variety of instrumentation, both for controlling as well as protecting the different hardware systems and the beam. The ESS beam power is unprecedented and an uncontrolled release could lead to serious damage of equipment installed along the tunnel and target station within only a few microseconds. Major failures of certain equipment will result in long repair times, because it is delicate and difficult to access and sometimes located in high radiation areas. To optimize the operational efficiency of the facility, accidents should be avoided and interruptions should be rare and limited to a short time. Hence, a sophisticated machine protection system is required. In order to stop efficiently the proton beam production in case of failures, a Fast Beam Interlock (FBI) system with a targeted reaction time of less than 5 microseconds and very high dependability is being designed. The design approach for this FPGA-based interlock system will be presented as well as the status on prototyping.  
poster icon Poster MOPGF138 [2.412 MB]  
MOPGF142 Development of a Network-based Personal Dosimetry System, KURAMA-micro radiation, network, monitoring, detector 1
  • M. Tanigaki
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • Y. Nakanishi
    Shikoku Research Institute Inc., Kagawa, Japan
  As the recovery from the nuclear accident in Fukushima progresses, strong demands arise on the continuous monitoring of individual radiation exposure based on action histories in a large group, such as the residents returning to their hometown after decontamination, or the workers involved in the decomissioning of the Fukushima Daiichi nuclear power plant. KURAMA-micro, a personal dosimetry system with network and positioning capability, is developed for such purpose. KURAMA-micro consists of a semiconductor dosimeter and a DAQ board based on OpenATOMS. Each unit records radiation data tagged with their measurement time and locations, and uploads the data to the server over a ZigBee-based network once each unit comes near one of the access points prepared expected activities range of users. Location data are basically obtained by a GPS unit, and an additional radio beacon scheme using ZigBee broadcast protocol is also used for the indoor positioning. The development of a proto-type KURAMA-micro is finished and a field test for the workers of a nuclear reactor under normal operation is planned in the spring of 2015.  
MOPGF147 Realization of a Concept for Scheduling Parallel Beams in the Settings Management System for FAIR controls, storage-ring, framework, ion 1
  • H.C. Hüther, J. Fitzek, R. Müller, A. Schaller, W.W. Terpstra
    GSI, Darmstadt, Germany
  Approaching the commissioning of CRYRING, the first accelerator to be operated using the new control system for FAIR (Facility for Antiproton and Ion Research), the new settings management system will also be deployed in a production environment for the first time. A major development effort is ongoing to realize requirements necessary to support accelerator operations at FAIR. The focus is on the pattern concept which allows controlling the whole facility with its different parallel beams in an integrative way. Being able to utilize central parts of the new control system already at CRYRING, before the first FAIR accelerators are commissioned, facilitates an early proof of concept and testing possibilities. Concurrently, refactorings and enhancements of the commonly used LSA (LHC Software Architecture) framework take place. At CERN, the interface to devices has been redesigned to enhance maintainability and diagnostics capabilities. At GSI, support for polynomials as a native datatype has been implemented, which will be used to represent accelerator settings as well as calibration curves. Besides functional improvements, quality assurance measures are being taken to increase code quality in prospect of productive use.  
poster icon Poster MOPGF147 [1.516 MB]  
MOPGF150 Improving SOLEIL Computing Operation with a Service-Oriented Approach software, controls, interface, synchrotron 1
  • A. Buteau, G. Abeillé, B. Gagey
    SOLEIL, Gif-sur-Yvette, France
  • J.C. Fouquet
    JCF, PARIS, France
  SOLEIL Computing division continuously needs to enhance its operational activities and minimize the workload of IT groups because IT performances directly impacts accelerators and beamlines operations in a context of an increase of the overall technical and organizational complexity. The Control & Data Acquisition group changed in 2013 it internal projects and support organization toward a service-oriented approach. This promising first step pointed out that enhancing the service delivered to our customers required to agree with them on a common vocabulary, on semantics and on operational processes. The ITIL* methodology appeared then as very good starting point to this purpose. This paper will describe the overall vision of our project 'Improving IT operation with a service oriented approach' and will detail the first ITIL operational processes we have adopted and how it helped us clarifying roles and responsibilities within our IT organization. In order to conclude the paper will give perspectives of using ITIL practices to enhance operational practices of other technical groups which activities strongly impact the service delivered to SOLEIL end users.
poster icon Poster MOPGF150 [2.658 MB]  
MOPGF154 Current Status and Perspectives of the Cryogenic Control System of EAST controls, cryogenics, status, database 1
  • L.B. Hu, Z.W. Zhou, M. Zhuang
    ASIPP, Hefei, People's Republic of China
  EAST (Experimental Advanced Superconducting Tokamak) is the first full superconducting experimental Tokamak fusion device in the world which has been carried out ten campaigns since its implementation at the end of 2005. The cryogenic control system for EAST was designed based on DeltaV DCS of Emerson Corporation which has been in operation for the same time period and has been proved to be safe and stable. However, Manny control components have been running beyond the expected lifetime gradually. Many problems from control system have affected the cryogenic system reliability. This paper presents the current status and upgrade solutions of the cryogenic control system of EAST.  
poster icon Poster MOPGF154 [0.518 MB]  
MOPGF155 Design and Status for the Electron Lens Project at the Relativistic Heavy Ion Collider electron, software, interface, controls 1
  • J.P. Jamilkowski, Z. Altinbas, M.R. Costanzo, T. D'Ottavio, X. Gu, M. Harvey, P. K. Kankiya, R.J. Michnoff, T.A. Miller, S. Nemesure, T.C. Shrey
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Lens upgrade project at the Relativistic Heavy Ion Collider (RHIC) has reached an operational status, whereby intense, pulsed or DC beams of electrons are generated in order to interact with the RHIC polarized proton beams in both the Blue and Yellow Rings at the 10 o'clock Interaction Region. Interactions between the electrons and protons are utilized to counteract the beam-beam effect that arises from the desired polarized proton collisions, which result in a higher RHIC luminosity. A complex system for operating the e-lens has been developed, including superconducting and non-superconducting magnet controls, instrumentation systems, a COTS-based Machine Protection System, custom Blue and Yellow e-lens timing systems for synchronizing the electron beam with the RHIC timing system, beam alignment software tools for maximizing electron-proton collisions, as well as complex user interfaces to support routine operation of the system. e-lens software and hardware design will be presented, as well as recent updates to the system that were required in order to meet changing system requirements in preparation for the first operational run of the system.
poster icon Poster MOPGF155 [1.826 MB]  
MOPGF158 Sirius Control System: Design, Implementation Strategy and Measured Performance controls, hardware, interface, network 1
  • J.P.S. Martins, M. Bacchetti, E.P. Coelho, R.F. Curcio, J.G.R.S. Franco, R.P. Lisboa, P.H. Nallin, A.R.D. Rodrigues, L.D.S. Sachinelli, M. E. Silva
    LNLS, Campinas, Brazil
  Sirius is a new 3 GeV synchrotron light source currently being designed at the Brazilian Synchrotron Light Laboratory (LNLS) in Campinas, Brazil. The Control System will be distributed and digitally connected to all equipment in order to avoid analog signal cables. A three-layer control system will be used. The equipment layer uses RS485 serial networks, running at 10Mbps, with a light proprietary protocol, over a proprietary hardware, in order to achieve good performance. The middle layer, interconnecting these serial networks, is based on Beaglebone Black single board computer and commercial switches. Operation layer will be composed of PC's running EPICS client programs. Special topology will be used for Orbit Feedback with a dedicated commercial 10Gbps switch. The lower layers software implementation may use either (a) distributed EPICS conventional servers, the traditional approach, or (b) centralized EPICS server, using data servers and light proprietary protocol over Ethernet. Both cases use the same hardware and can run concurrently, sharing the control network. Measured performance with these two approaches will be presented.  
poster icon Poster MOPGF158 [1.447 MB]  
MOPGF163 Status of the Local Monitor and Control System of SKA Dishes controls, monitoring, interface, software 1
  • S. Riggi, U. Becciani, A. Costa, A. Ingallinera, F. Schillirò, C. Trigilio
    INAF-OACT, Catania, Italy
  • V. Baldini, R. Cirami, A. Marassi
    INAF-OAT, Trieste, Italy
  • G. Nicotra, C. Nocita
    INAF IRA, Bologna, Italy
  The Square Kilometer Array (SKA) project aims at building the world's largest radio observatory to observe the radio sky with unprecedented sensitivity and collecting area. In the SKA1 phase of the project, two dish arrays are to be built, one in South Africa (SKA1-Mid) and the other in Western Australia (SKA1-Survey). Each antenna will be provided with a local monitor and control system, enabling remote operations to engineers and to the Telescope Manager system. In this paper we present the current status of the software system being designed to monitor and control the dish subsystem. An overview of the dish instrumentation is reported, along with details concerning the software architecture, functional interfaces, prototyping and the evaluated technologies.  
poster icon Poster MOPGF163 [1.181 MB]  
MOPGF171 Active Magnetic Bearings System Upgrade for LHC Cryogenic Cold Compressor, Radiations Mitigation Project (R2E) controls, radiation, hardware, software 1
  • M. Pezzetti
    CERN, Geneva, Switzerland
  • P. Arpaia
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
  • M. Girone
    U. Sannio, Benevento, Italy
  • M. Hubatka
    MECOS AG, Winterthur, Switzerland
  During the normal operation of the Large Hadron Collider, the high hadron flux level induced several Single Event Errors (SEE failure caused by a particle passing through) to the standard electronics installed. Such events perturbed LHC normal operation. As a consequence, a mitigation plan to minimise radiation-induced failures and optimise LHC operation was started: R2E mitigation project. This paper will deal with the mitigation problem for LHC/P8 equipment and the main improvements for the equipment in P4, with special focus on the controllers for the Active Magnetic Bearings used in the IHI-LINDE cold compressors. In addition, a new approach based on frequency response analysis to assess the cold compressor mechanical quality will be presented. The hardware and software design, implemented to increase the global reliability of the system, will be highlighted. A corresponding experiment protocol was developed at CERN in collaboration with the MECOS Company and the Universities of Sannio and Napoli Federico II. Preliminary experimental results showing the performance of the proposed approach on a case study for the cold compressor in P4 will be finally reported.  
MOPGF179 Status of the Solaris Control System - Collaborations and Technology controls, TANGO, software, GUI 1
  • P.P. Goryl, C.J. Bocchetta, P. Bulira, A.I. Wawrzyniak, K. Wawrzyniak, L. Żytniak
    Solaris, Kraków, Poland
  • V.H. Hardion, J.J. Jamroz, J. Lidón-Simon, M. Lindberg, A.G. Persson, D.P. Spruce
    MAX-lab, Lund, Sweden
  • M.J. Stankiewicz
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
  • T. Szymocha
    Cyfronet, Kraków, Poland
  Funding: Work supported by the European Regional Development Fund within the frame of the Innovative Economy Operational Program: POIG.02.01.00-12-213/09.
The Solaris is a synchrotron light source starting just now in Kraków, Poland. It is built with strong collaboration with other European accelerator facilities. The MAX-IV project in Lund, Sweden and Tango Community are the most important partners in the project. Solaris has built a twin copy of MAX-IV 1.5GeV ring and linear accelerator based on the same components as the ones of MAX-IV. Thus, both facilities share know-how and apply similar technologies for the control system, among them the Tango CS is used for software layer. Status of the control system in Kraków as well as collaborations and technological choices impact on its success will be presented.
poster icon Poster MOPGF179 [2.496 MB]  
TUA3O04 CS-Studio Scan System Parallelization controls, interface, EPICS, experiment 1
  • K.-U. Kasemir, M.R. Pearson
    ORNL, Oak Ridge, Tennessee, USA
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.
slides icon Slides TUA3O04 [2.785 MB]  
TUC3I01 Machine Protection and Interlock System for Large Research Instruments controls, superconducting-magnet, interlocks, extraction 1
  • R. Schmidt
    CERN, Geneva, Switzerland
  Major research instruments such as accelerators and fusion reactors operate with large amount of power and energy stored in beams and superconducting magnets. Highly reliable Machine Protection systems are required to operate such instruments without damaging equipment in case of failure. The increased interest in protection is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the large energy stored in the beam (in particular for hadron colliders such as LHC) and to the stored energy in magnet systems such as for ITER and LHC. Machine Protection includes process and equipment monitoring, a system to safely stop operation (e.g. dumping the beam or extracting the energy stored in the magnets) and an interlock system for highly reliable communication between protection systems. Depending on the application, the reaction of the protection function to failures must be very fast (for beam protection systems down to some us). In this paper an overview of the challenges for protection is given, and examples of interlock systems and their use during operation are presented.  
slides icon Slides TUC3I01 [1.883 MB]  
TUC3O03 Development and Realisation of the ESS Machine Protection Concept proton, neutron, target, monitoring 1
  • A. Nordt, R. Andersson, T. Korhonen, A. Monera Martinez, M. Zaera-Sanz
    ESS, Lund, Sweden
  • A. Apollonio, R. Schmidt
    CERN, Geneva, Switzerland
  • C. Hilbes
    ZHAW, Winterthur, Switzerland
  ESS is facing extremely high beam availability requirements and is largely relying on custom made, very specialised, and expensive equipment for its operation. The proton beam power with an average of 5MW per pulse will be unprecedented and its uncontrolled release can lead to serious damage of the delicate equipment, causing long shutdown periods, inducing high financial losses and, as a main point, interfering drastically with international scientific research programs relying on ESS operation. Implementing a fit-for-purpose machine protection concept is one of the key challenges in order to mitigate these risks. The development and realisation of the measures needed to implement such concept to the correct level in case of a complex facility like the ESS, requires a systematic approach, and will be discussed in this paper.  
slides icon Slides TUC3O03 [11.927 MB]  
  • K. Ha, W.X. Cheng, L.R. Dalesio, J.H. De Long, Y. Hu, P. Ilinski, J. Mead, D. Padrazo, S. Seletskiy, O. Singh, R.M. Smith, Y. Tian
    BNL, Upton, Long Island, New York, USA
  • G. Shen
    FRIB, East Lansing, Michigan, USA
  Funding: Work supported by DOE contract No: DE-AC02-98CD10886
At National Synchrotron Light Source-II (NSLS-II), a field-programmable gate array (FPGA) based global active interlock system (AIS) has been commissioned and used for beam operations. The main propose of AIS is to protect insertion devices (ID) and vacuum chambers from the thermal damage of high density synchrotron radiation power. This report describes the status of AIS hardware, software architectures and operation experience.
slides icon Slides TUC3O05 [21.147 MB]  
TUC3O06 Machine Protection System for the KOMAC 100-MeV Proton Linac linac, ion, proton, ion-source 1
  • Y.G. Song, Y.-S. Cho, D.I. Kim, H.S. Kim, H.-J. Kwon, K.T. Seol, S.P. Yun
    KAERI, Daejon, Republic of Korea
  Funding: This work has been supported through KOMAC operation fund of KAERI by MSIP(Ministry of Science, ICT and Future Planning)
A Machine Protection System (MPS) is one of the important systems for the 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC). The MPS is required to protect the very sensitive and essential equipment during machine operation. The purpose of the MPS is to shut off the beam when the Radio-Frequency (RF) and ion source are unstable or a beam loss monitor detects high activation. The MPS includes a variety of sources, such as beam loss, RF and high voltage converter modulator faults, fast closing valves for vacuum window leaks at the beam lines and so on. The MPS consists of a hard-wired protection for fast interlocks and a soft-wired protection for slow interlock. The hardware-based MPS has been fabricated, and the requirement has been satisfied with the results within 3 μs. The Experimental Physics and Industrial Control System (EPICS) control system has been also designed to monitor and control the MPS using a Programmable Logic Controller (PLC). This paper describes the design and implementation of the MPS for the 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC).
slides icon Slides TUC3O06 [12.865 MB]  
TUC3O07 Safety Integrity Level (SIL) Verification for SLAC Radiation Safety Systems controls, PLC, radiation, electronics 1
  • F. Tao, E. Carrone, J.M. Murphy, K.T. Turner
    SLAC, Menlo Park, California, USA
  SIL is a key concept in functional safety standards: it is a performance measure on how reliable is a safety system performing a particular safety function. In the system design stage, SIL verification must be performed to prove that the SIL achieved meets/exceeds the SIL assigned during risk assessment, to comply with standards. Unlike industrial applications, where safety systems are usually composed of certified devices or devices with long usage history, safety systems in large physics laboratories are less standardized and more complex in terms of system architecture and devices used. In addition, custom designed electronics are often employed, with limited reliability information. Verifying SIL for these systems requires in-depth knowledge of reliability evaluation. In this paper, it is demonstrated how to determine SIL using SLAC radiation safety systems (Personnel Protection System (PPS) and Beam Containment System (BCS)) as examples. PPS utilizes commercial safety rated devices, while BCS also contains customized electronics. Choice of standards, methods of evaluation, reliability data gathering process (both from industry and from hardware development) are also discussed.  
slides icon Slides TUC3O07 [1.754 MB]  
TUD3O03 REMUS: The new CERN Radiation and Environment Monitoring Unified Supervision monitoring, radiation, database, interface 1
  • A. Ledeul, G. Segura, R.P.I. Silvola, B. Styczen, D. Vasques Ribeira
    CERN, Geneva, Switzerland
  The CERN Health, Safety and Environment Unit is mandated to provide a Radiation and Environment Monitoring SCADA system for all CERN accelerators, experiments as well as the environment. In order to face the increasing demand of radiation protection and continuously assess both the conventional and the radiological impact on the environment, CERN is developing and progressively deploying its new supervisory system, called REMUS - Radiation and Environment Monitoring Unified Supervision. This new WinCC OA based system aims for an optimum flexibility and scalability, based on the experience acquired during the development and operation of the previous CERN radiation and environment supervisory systems (RAMSES and ARCON). REMUS will interface with more than 70 device types, providing about 3,000 measurement channels (approximately 500,000 tags) by end 2016. This paper describes the architecture of the system, as well as the innovative design that was adopted in order to face the challenges of heterogeneous equipment interfacing, diversity of end users and non-stop operation.  
slides icon Slides TUD3O03 [2.213 MB]  
TUD3O04 The Virtual European XFEL Accelerator software, hardware, controls, simulation 1
  • R. Kammering, W. Decking, L. Fröhlich, O. Hensler, T. Limberg, S.M. Meykopff, K.R. Rehlich, V. Rybnikov, J. Wilgen, T. Wilksen
    DESY, Hamburg, Germany
  The ambitious commissioning plans for the European XFEL require that many of the high-level controls are ready from the beginning. The idea arose to create a virtual environment to carry out such developments and tests in advance, to test interfaces, software in general and the visualisation of the variety of components. Based on the experiences and on the systems that are already in operation at the FLASH facility for several years, such a virtual environment is being created. The system can already simulate most of the key components of the upcoming accelerator. Core of the system is an event synchronized data acquisition system (DAQ). The interfaces of the DAQ system towards the device level, as well as to the high-level side is utilising the same software stack as the production system does. Thus, the software can be developed and used interchangeably between the virtual and the real machine. This allows to test concepts, interfaces and identify problems and errors at an early stage. In this paper the opportunities arising from the operation of such a virtual machine will be presented. The limits in terms of the resulting complexity and physical relationships will also be shown.  
slides icon Slides TUD3O04 [3.225 MB]  
WEB3O01 Open Source Contributions and Using Osgi Bundles at Diamond Light Source software, interface, controls, hardware 1
  • M.W. Gerring, A. Ashton, R.D. Walton
    DLS, Oxfordshire, United Kingdom
  This paper presents the involvement of Diamond Light Source (DLS) with the open source community, the Eclipse Science Working Group and how DLS is changing to share software development effort better between groups. The paper explains moving from product-based to bundle-based software development process which lowers reinvention, increases reuse and reduces software development and support costs. This paper details specific ways in which DLS are engaging with the open source community and changing the way that research institutions deliver open source code.  
slides icon Slides WEB3O01 [0.936 MB]  
WEB3O02 quasar - A Generic Framework for Rapid Development of OPC UA Servers controls, interface, toolkit, framework 1
  • S. Schlenker, B. Farnham, P.P. Nikiel, C.-V. Soare
    CERN, Geneva, Switzerland
  • D. Abalo Miron
    University of Oviedo, Oviedo, Spain
  • V. Filimonov
    PNPI, Gatchina, Leningrad District, Russia
  This paper describes a new approach for generic design and efficient development of OPC Unified Architecture (UA) servers. Development starts with creation of a design XML file, describing an OO information model of the target system or device. Using this model, the framework generates an executable OPC UA server exposing the per-design address space without writing a single line of code while supporting standalone or embedded platforms. Further, the framework generates skeleton code for the interface logic of the target system or device. This approach allows both novice and expert developers to create servers for the systems they are experts in while greatly reducing design and development effort as compared to developments based on COTS OPC UA toolkits. Higher level software such as SCADA systems may benefit from using the design description to generate client connectivity configuration and data representation as well as validation tools. In this contribution, the concept and implementation of this framework is detailed along with examples of actual production-level usage in the detector control system of the ATLAS Experiment at CERN and beyond.  
slides icon Slides WEB3O02 [3.902 MB]  
WEC3O04 New Event Timing System for Damping Ring at SuperKEKB timing, linac, positron, damping 1
  • H. Kaji, K. Furukawa, M. Iwasaki, T. Kobayashi, F. Miyahara, T.T. Nakamura, M. Satoh, M. Suetake, M. Tobiyama
    KEK, Ibaraki, Japan
  • Y. Iitsuka
    EJIT, Hitachi, Ibaraki, Japan
  • T. Kudou, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • M. Liu, C.X. Yin
    SINAP, Shanghai, People's Republic of China
  SuperKEKB is the upgrade of KEKB, which is the world's largest luminosity accelerator at KEK. One of key items to realize 40 times larger luminosity than that of KEKB is damping ring (DR) for positron injection. The injector linac (LINAC) once stores the produced positrons into DR and suppress their emittance. Then low emittance positrons are extracted from DR and injected into the main ring. For this complicated injection process, the Event Timing System* for LINAC** was upgraded and its soundness is demonstrated by injecting electrons into two light source rings***. New Event modules were also installed under the Event network for LINAC as the sub timing system for DR. New Event modules were developed which can be operated with the different Event clock from that of upstream modules. It solves the difference in RF frequency between LINAC (2856MHz) and DR (509MHz). This sub timing system can manage the triggers towards totally 84 BPMs at DR although it consists of only 5 Event modules. The timing of those triggers can be independently set in more precise than 100ps. The requirements to DR timing system and the newly developed modules with its configuration at DR are explained.
*H. Kaji et al., THCOCA04, Proc. of ICALEPCS'13, San Francisco, CA.**H. Kaji et al., TUPRI109, Proc. of IPAC'14, Dresden, Germany.***Abstract submitted to IPAC'15.
slides icon Slides WEC3O04 [1.496 MB]  
WEC3O06 ERL Time Management System timing, laser, interface, controls 1
  • P. K. Kankiya, T.A. Miller, B. Sheehy
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Energy Recovery LINAC (ERL) at BNL is an R&D project. A timing system was developed in conjunction with other available timing systems in order to operate and synchronize instruments at the ERL. This paper describes the time management software which is responsible for automating the delay configuration based on beam power and instrument limitations, for maintaining beam operational parameters, and respond to machine protection system.
slides icon Slides WEC3O06 [4.145 MB]  
WED3O03 MADOCA II Data Logging System Using NoSQL Database for SPRING-8 database, data-acquisition, controls, embedded 1
  • A. Yamashita, M. Kago
    JASRI/SPring-8, Hyogo-ken, Japan
  The data logging system for SPring-8 was upgraded to the new system using NoSQL database, as a part of a MADOCA II framework. It has been collecting all the log data required for accelerator control without any trouble since the upgrade. In the past, the system powered by a relational database management system (RDBMS) had been operating since 1997. It had grown with the development of accelerators. However, the system with RDBMS became difficult to handle new requirements like variable length data storage, data mining from large volume data and fast data acquisition. New software technologies gave solution for the problems. In the new system, we adopted two NoSQL databases, Apache Cassandra and Redis, for data storage. Apache Cassandra is utilized for perpetual archive. It is a scalable and highly available column oriented database suitable for time series data. Redis is used for the real time data cache because of a very fast in-memory key-value store. Data acquisition part of the new system was also built based on ZeroMQ message packed by MessagePack. The operation of the new system started in January 2015 after the long term evaluation over one year.  
slides icon Slides WED3O03 [0.508 MB]  
WEM308 A Multi-Modal Human-Machine-Interface for Accelerator Operation and Maintenance Applications controls, status, interface, hardware 1
  • R. Bacher
    DESY, Hamburg, Germany
  The advent of advanced mobile, gaming and augmented reality devices provides users with novel interaction modalities. Today's accelerator control applications do not provide features like speech, finger and hand gesture recognition or even gaze detection. Their look-and-feel and handling are typically optimized for mouse-based interactions and are not well suited for the specific requirements of more complex interaction modalities. This paper describes the conceptual design and implementation of an intuitive single-user, multi-modal human-machine interface for accelerator operation and maintenance applications. The interface seamlessly combines standard actions (mouse), actions associated with 2D single/multi-finger gestures (touch sensitive display) and 3D single/multi-finger and hand gestures (motion controller), and spoken commands (speech recognition system). It will be an integral part of the web-based, platform-neutral Web2cToGo framework belonging to the Web2cToolkit suite and will be applicable for desktop and notebook computers, tablet computers and smartphones, and even see-through augmented reality glasses.  
slides icon Slides WEM308 [0.399 MB]  
poster icon Poster WEM308 [0.815 MB]  
WEPGF002 A Protocol for Streaming Large Messages with UDP network, controls, Ethernet, interface 1
  • C.I. Briegel, R. Neswold, M.Z. Sliczniak
    Fermilab, Batavia, Illinois, USA
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
We have developed a protocol concatenating UDP datagrams to stream large messages. The datagrams can be sized to the optimual size of the receiver. The protocol provides acknowledged reception based on a sliding window concept. The implementation provides for up to 10 Mbyte messages and guarrantees complete delivery or a corresponding error. The protocol is implemented as a standalone messaging between two sockets and also within the context of Fermilab's ACNet protocol. Results of this implementation in vxWorks is analyzed.
poster icon Poster WEPGF002 [0.792 MB]  
WEPGF005 The New Modular Control System for Power Converters at CERN controls, interface, FPGA, high-voltage 1
  • M. Di Cosmo, B. Todd
    CERN, Geneva, Switzerland
  The CERN Accelerator Complex consists of several generations of particle accelerators, having around 5000 power converters supplying regulated current and voltage to normal and superconducting magnets. Today around 12 generations of legacy control system types are in operation in the accelerator complex, having significant impact on operability, support and flexibility for the converter controls electronics. Over the past years a new generation of modular controls called RegFGC3 has been developed by CERN's power conversion group. The goal is to provide a new standardised and cost effective control solution, supporting the largest number of converter topologies in a single platform. This will reduce the maintenance cost by decreasing the variety and diversity of control systems whilst simultaneously improving the operability of power converters. This paper describes Thyristor-based power converter controls as well as the on-going design and realization, focusing on functional requirements and first implementation.  
poster icon Poster WEPGF005 [1.126 MB]  
WEPGF021 Design of Control Networks for China Initiative Accelerator Driven System network, Ethernet, controls, target 1
  • Z. He, W. Cui, Y.H. Guo, Y. He, Y. Luo, Q. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  In this paper, we report the conceptual design of control networks used in the control system for China initiative accelerator driven sub-critical (ADS) facility which consists of two accelerator injectors, a main accelerator, a spallation target and a reactor. Because different applications have varied expectations on reliability, latency, jitter and bandwidth, the following networks have been designed for the control systems, i.e. a central operation network for the operation of accelerators, target, and reactor; a reactor protection network for preventing the release of radioactivity to the environment; a personnel protection network for protecting personnel against unnecessary exposure to hazards; a machine protection network for protecting the machines in the ADS system; a time communication network for providing timing and synchronization for three accelerators; and a data archiving network for recording important measurement results from accelerators, target and reactor. Finally, we discuss the application of high-performance Ethernet technologies, such as Ethernet ring protection protocol, in these control networks for CIADS.  
poster icon Poster WEPGF021 [0.192 MB]  
WEPGF028 A Self-Configurable Server for Controlling Devices Over the Simple Network Management Protocol controls, network, monitoring, status 1
  • V. Rybnikov, V. Petrosyan
    DESY, Hamburg, Germany
  The Simple Network Management Protocol (SNMP) is an open-source protocol that allows many manufacturers to utilize it for controlling and monitoring their hardware. More and more SNMP-manageable devices show up on the market that can be used by control systems for accelerators. Some SNMP devices are being used at the free-electron laser (FLASH) at DESY and planned to be used at the European X-ray Free Electron Laser (XFEL) in Hamburg, Germany. To provide an easy and uniform way of controlling SNMP devices a server has been developed. The server configuration, with respect to device parameters to control, is done during its start-up and driven by the manufacturer Management Information Base (MIB) files provided with SNMP devices. This paper gives some details of the server design, its implementation and examples of use.  
poster icon Poster WEPGF028 [3.065 MB]  
WEPGF030 The EPICS Archiver Appliance EPICS, controls, interface, database 1
  • M.V. Shankar, L.F. Li
    SLAC, Menlo Park, California, USA
  • M.A. Davidsaver
    BNL, Upton, New York, USA
  • M.G. Konrad
    FRIB, East Lansing, Michigan, USA
  The EPICS Archiver Appliance was developed by a collaboration of SLAC, BNL and FRIB to allow for the archival of millions of PVs, mainly focusing on data retrieval performance. It offers the ability to cluster appliances and to scale by adding appliances to the cluster. Multiple stages and an inbuilt process to move data between stages facilitates the usage of faster storage and the ability to decimate data as it is moved. An HTML management interface and scriptable business logic significantly simplifies administration. Well-defined customization hooks allow facilities to tailor the product to suit their requirements. Mechanisms to facilitate installation and migration have been developed. The system has been in production at SLAC for about 2 years now, at FRIB for about a year and is heading towards a production deployment at BNL. At SLAC, the system has significantly reduced maintenance costs while enabling new functionality that was not possible before. This paper presents an overview of the system and shares some of our experience with deploying and managing it at our facilities.  
poster icon Poster WEPGF030 [1.250 MB]  
WEPGF031 The Evolution of the Simulation Environment in ALMA simulation, software, network, hardware 1
  • T.C. Shen, S.A. Fuica, A. Ovando, N. Saez, R. Soto, T.I. Staig, G. Velez
    ALMA Observatory, Santiago, Chile
  • J.P.A. Ibsen
    ESO, Santiago, Chile
  The Atacama Large Millimeter /sub millimeter Array (ALMA) has entered into operation phase since 2014. This transition changed the priorities within the observatory, in which, most of the available time will be dedicated to science observations at the expense of technical time that software testing used to have available in abundance. The scarcity of the technical time surfaces one of the weakest points in the existent infrastructure available for software testing: the simulation environment of the ALMA software. The existent simulation focuses on the functionality aspect but not on the real operation scenarios with all the antennas. Therefore, scalability and performance problems introduced by new features or hidden in the current accepted software cannot be verified until the actual problem explodes during operation. Therefore, it was planned to design and implement a new simulation environment, which must be comparable, or at least, be representative of the production environment. In this paper we will review experiences gained and lessons learnt during the design and implementation of the new simulated environment.  
poster icon Poster WEPGF031 [1.398 MB]  
WEPGF034 The Power Supply Control System of CSR controls, power-supply, database, ion 1
  • W. Zhang, S. An, S.Z. Gou, K. Gu, P. Li, Y.P. Wang, M. Yue
    IMP/CAS, Lanzhou, People's Republic of China
  This paper gives a brief description of the power supply control system for Cooler Storage Ring (CSR). It introduces in detail mainly of the control system architecture, hardware and software. We use standard distributed control system (DCS) architecture. The software is the standard three-layer structure. OPI layer realizes data generation and monitoring. The intermediate layer is a data processing and transmission. Device control layer performs data output of the power supply. We use ARM + DSP controller designed by ourselves for controlling the power supply output. At the same time, we have adopted the FPGA controller designed for timing for power supply control in order to meet the requirements of accelerator synchronized with the output of the power supply.  
poster icon Poster WEPGF034 [0.254 MB]  
WEPGF036 Data Categorization And Storage Strategies At RHIC Linux, network, real-time, collider 1
  • S. Binello, K.A. Brown, T. D'Ottavio, R.A. Katz, J.S. Laster, J. Morris, J. Piacentino
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
This past year the Controls group within the Collider Accelerator Department at Brookhaven National Laboratory replaced the Network Attached Storage (NAS) system that is used to store software and data critical to the operation of the accelerators. The NAS also serves as the initial repository for all logged data. This purchase was used as an opportunity to categorize the data we store, and review and evaluate our storage strategies. This was done in the context of an existing policy that places no explicit limits on the amount of data that users can log, no limits on the amount of time that the data is retained at its original resolution, and that requires all logged data be available in real-time. This paper will describe how the data was categorized, and the various storage strategies used for each category.
poster icon Poster WEPGF036 [0.337 MB]  
WEPGF037 Data Lifecycle in Large Experimental Physics Facilities: The Approach of the Synchrotron ELETTRA and the Free Electron Laser FERMI experiment, data-analysis, synchrotron, electron 1
  • F. Billè, R. Borghes, F. Brun, V. Chenda, A. Curri, V. Duic, D. Favretto, G. Kourousias, M. Lonza, M. Prica, R. Pugliese, M. Scarcia, M. Turcinovich
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  Often the producers of Big Data face the emerging problem of Data Deluge. Nevertheless experimental facilities such as synchrotrons and free electron lasers may have additional requirements, mostly related to the necessity of managing the access for thousands of scientists. A complete data lifecycle describes the seamless path that joins distinct IT tasks such as experiment proposal management, user accounts, data acquisition and analysis, archiving, cataloguing and remote access. This paper presents the data lifecycle of the synchrotron ELETTRA and the free electron laser FERMI. With the focus on data access, the Virtual Unified Office (VUO) is presented. It is a core element in scientific proposal management, user information DB, scientific data oversight and remote access. Eventually are discussed recent developments of the beamline software, that holds the key role to data and metadata acquisition but also requires integration with the rest of the system components in order to provide data cataloging, data archiving and remote access. The scope of this paper is to disseminate the current status of a complete data lifecycle, discuss key issues and hint on the future directions.  
poster icon Poster WEPGF037 [1.110 MB]  
WEPGF044 Filestore: A File Management Tool for NSLS-II Beamlines experiment, data-analysis, EPICS, interface 1
  • A. Arkilic, T.A. Caswell, D. Chabot, L.R. Dalesio, W.K. Lewis
    BNL, Upton, Long Island, New York, USA
  Funding: Brookhaven National Lab, Departmet of Energy
NSLS-II beamlines can generate 72,000 data sets per day resulting in over 2 M data sets in one year. The large amount of data files generated by our beamlines poses a massive file management challenge. In response to this challenge, we have developed filestore, as means to provide users with an interface to stored data. By leveraging features of Python and MongoDB, filestore can store information regarding the location of a file, access and open the file, retrieve a given piece of data in that file, and provide users with a token, a unique identifier allowing them to retrieve each piece of data. Filestore does not interfere with the file source or the storage method and supports any file format, making data within files available for NSLS-II data analysis environment.
poster icon Poster WEPGF044 [0.849 MB]  
WEPGF045 Large Graph Visualization of Millions of connections in the CERN Control System Network Traffic: Analysis and Design of Routing and Firewall Rules with a New Approach network, controls, database, Windows 1
  • L. Gallerani
    CERN, Geneva, Switzerland
  The CERN Technical Network (TN) TN was intended to be a network for accelerator and infrastructure operations. However, today, more than 60 Million IP packets are routed every hour between the General Purpose Network (GPN) and the TN involving more than 6000 different hosts. In order to improve the security of the accelerator control system, it is fundamental to understand the network traffic between the two networks in order to define appropriate routing and firewall rules without impacting Operations. The complexity and huge size of the infrastructure and the number of protocols and services involved have discouraged for years any attempt to understand and control the network traffic between the GPN and the TN. In this talk, we will show a new way to solve the problem graphically. Combining the network traffic analysis with the use of large graph visualization algorithms we produce comprehensible and usable 2D large colour topology graphs mapping the complex network relations of the control system machines and services in a detail and clarity never seen before. The talk integrates very interesting pictures and video of the graphical analysis attempt.  
poster icon Poster WEPGF045 [6.804 MB]  
WEPGF046 Towards a Second Generation Data Analysis Framework for LHC Transient Data Recording framework, data-analysis, hardware, extraction 1
  • S. Boychenko, C. Aguilera-Padilla, M. Dragu, M.A. Galilée, J.C. Garnier, M. Koza, K.H. Krol, R. Orlandi, M.C. Poeschl, T.M. Ribeiro, K.S. Stamos, M. Zerlauth
    CERN, Geneva, Switzerland
  • M. Zenha-Rela
    University of Coimbra, Coimbra, Portugal
  During the last two years, CERNs Large Hadron Collider (LHC) and most of its equipment systems were upgraded to collide particles at an energy level twice higher compared to the first operational period between 2010 and 2013. System upgrades and the increased machine energy represent new challenges for the analysis of transient data recordings, which have to be both dependable and fast. With the LHC having operated for many years already, statistical and trend analysis across the collected data sets is a growing requirement, highlighting several constraints and limitations imposed by the current software and data storage ecosystem. Based on several analysis use-cases, this paper highlights the most important aspects and ideas towards an improved, second generation data analysis framework to serve a large variety of equipment experts and operation crews in their daily work.  
poster icon Poster WEPGF046 [0.497 MB]  
WEPGF047 Smooth Migration of CERN Post Mortem Service to a Horizontally Scalable Service controls, distributed, framework, dumping 1
  • J.C. Garnier, C. Aguilera-Padilla, S. Boychenko, M. Dragu, M.A. Galilée, M. Koza, K.H. Krol, T. Martins Ribeiro, R. Orlandi, M.C. Poeschl, M. Zerlauth
    CERN, Geneva, Switzerland
  The Post Mortem service for CERNs accelerator complex stores and analyses transient data recordings of various equipment systems following certain events, like a beam dump or magnet quenches. The main purpose of this framework is to provide fast and reliable diagnostic to the equipment experts and operation crews to decide whether accelerator operation can continue safely or whether an intervention is required. While the Post Mortem System was initially designed to serve CERNs Large Hadron Collider (LHC), the scope has been rapidly extended to include as well External Post Operational Checks and Injection Quality Checks in the LHC and its injector complex. These new use cases impose more stringent time-constraints on the storage and analysis of data, calling to migrate the system towards better scalability in terms of storage capacity as well as I/O throughput. This paper presents an overview on the current service, the ongoing investigations and plans towards a scalable data storage solution and API, as well as the proposed strategy to ensure an entirely smooth transition for the current Post Mortem users.  
poster icon Poster WEPGF047 [1.449 MB]  
WEPGF059 The Australian Store. Synchrotron Data Management Service for Macromolecular Crystallography synchrotron, data-management, experiment, interface 1
  • G.R. Meyer, S. Androulakis, P.J. Bertling, A.M. Buckle, W.J. Goscinski, D. Groenewegen, C. Hines, A. Kannan, S. McGowan, S.M. Quenette, J. Rigby, P. Splawa-Neyman, J.M. Wettenhall
    Monash University, Clayton, Australia
  • D. Aragao, T. Caradoc-Davies, N. Mudie
    SLSA, Clayton, Australia
  • C.S. Bond
    University of Western Australia, Crawley, Australia
  Store. Synchrotron is a service for management and publication of diffraction data from the macromolecular crystallography (MX) beamlines of the Australian Synchrotron. Since the start of the development, in 2013, the service has handled over 51.8 TB of raw data (~ 4.1 million files). Raw data and autoprocessing results are made available securely via the web and SFTP so experimenters can sync it to their labs for further analysis. With the goal of becoming a large public repository of raw diffraction data, a guided publishing workflow which optionally captures discipline specific information was built. The MX-specific workflow links PDB coordinates from the PDB to raw data. An optionally embargoed DOI is created for convenient citation. This repository will be a valuable tool for crystallography software developers. To support complex projects, integration of other instruments such as microscopes is underway. We developed an application that captures any data from instrument computers, enabling centralised data management without the need for custom ingestion workflows. The next step is to integrate the hosted data with interactive processing and analysis tools on virtual desktops.  
poster icon Poster WEPGF059 [2.109 MB]  
WEPGF060 A Data Management Infrastructure for Neutron Scattering Experiments in J-PARC/MLF data-management, neutron, database, experiment 1
  • K. Moriyama, T. Nakatani
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  The role of data management is one of the greatest contributions in the research workflow for scientific experiments such as neutron scattering. The facility is required to safely and efficiently manage a huge amount of data over the long duration, and provide an effective data access for facility users promoting the creation of scientific results. In order to meet these requirements, we are operating and updating a data management infrastructure in J-PAPC/MLF, which consists of the web-based integrated data management system called the MLF Experimental Database (MLF EXP-DB), the hierarchical raw data repository composed of distributed storages, and the integrated authentication system. The MLF EXP-DB creates experimental data catalogues in which raw data, measurement logs, and other contextual information on sample, experimental proposal, investigator, etc. are interrelated. This system conducts the reposition, archive and on-demand retrieve of raw data in the repository. Facility users are able to access the experimental data via a web portal. This contribution presents the overview of our data management infrastructure, and the recent updated features for high availability, scaling-out, and flexible data retrieval in the MLF EXP-DB.  
poster icon Poster WEPGF060 [1.017 MB]  
WEPGF063 Developing HDF5 for the Synchrotron Community detector, synchrotron, software, experiment 1
  • N.P. Rees
    DLS, Oxfordshire, United Kingdom
  • H.R. Billich
    PSI, Villigen PSI, Switzerland
  • A. Götz
    ESRF, Grenoble, France
  • Q. Koziol, E. Pourmal
    The HDF Group, Champaign, Illinois, USA
  • M. Rissi
    DECTRIS Ltd., Baden, Switzerland
  • E. Wintersberger
    DESY, Hamburg, Germany
  HDF5 and NeXus (which normally uses HDF5 as its underlying format) have been widely touted as a standard for storing Photon and Neutron data. They offer many advantages to other common formats and are widely used at many facilities. However, it has been found that the existing implementations of these standards have limited the performance of some recent detector systems. This paper describes how the synchrotron light source community has worked closely with The HDF Group to drive changes to the HDF5 software to make it more suitable for their environment. This includes developments managed by a detector manufacturer (Dectris - for direct chunk writes) as well as synchrotrons (DESY, ESRF and Diamond - for pluggable filters, Single Writer/Multiple Reader and Virtual Data Sets).  
poster icon Poster WEPGF063 [0.718 MB]  
WEPGF066 A Systematic Measurement Analyzer for LHC Operational Data collimation, luminosity, database, beam-losses 1
  • G. Valentino, X. Buffat, D. Kirchner, S. Redaelli
    CERN, Geneva, Switzerland
  The CERN Accelerator Logging Service stores data from hundreds of thousands of parameters and measurements, mostly from the Large Hadron Collider (LHC). The systematic measurement analyzer is a Java-based tool that is used to visualize and analyze various beam measurement data over multiple fills and time intervals during the operational cycle, such as ramp or squeeze. Statistical analysis and various manipulations of data are possible, including correlation with several machine parameters such as β* and energy. Examples of analyses performed include checks of collimator positions, beam losses throughout the cycle and tune stability during the squeeze which is then used for feed-forward purposes.  
poster icon Poster WEPGF066 [2.270 MB]  
WEPGF068 Formalizing Expert Knowledge in order to Analyse CERN's Control Systems controls, monitoring, data-analysis, software 1
  • A. Voitier, M. Gonzalez-Berges, F.M. Tilaro
    CERN, Geneva, Switzerland
  • M. Roshchin
    Siemens AG, Corporate Technology, München, Germany
  The automation infrastructure needed to reliably run CERN's accelerator complex and its experiments produces large and diverse amounts of data, besides physics data. Over 600 industrial control systems with about 45 million parameters store more than 100 terabytes of data per year. At the same time a large technical expertise in this domain is collected and formalized. The study is based on a set of use cases classified into three data analytics domains applicable to CERN's control systems: online monitoring, fault diagnosis and engineering support. A known root cause analysis concerning gas system alarms flooding was reproduced with Siemens' Smart Data technologies and its results were compared with a previous analysis. The new solution has been put in place as a tool supporting operators during breakdowns in a live production system. The effectiveness of this deployment suggests that these technologies can be applied to more cases. The intended goals would be to increase CERN's systems reliability and reduce analysis efforts from weeks to hours. It also ensures a more consistent approach for these analyses by harvesting a central expert knowledge base available at all times.  
poster icon Poster WEPGF068 [1.468 MB]  
WEPGF085 The Construction of the SuperKEKB Magnet Control System power-supply, interface, controls, EPICS 1
  • T.T. Nakamura, A. Akiyama, M. Iwasaki, H. Kaji, J.-I. Odagiri, S. Sasaki
    KEK, Ibaraki, Japan
  • T. Aoyama, T. Nakamura, K. Yoshii
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • N. Yoshifuji
    EJIT, Hitachi, Ibaraki, Japan
  There were more than 2500 magnet power supplies for KEKB storage rings and injection beam transport lines. For the remote control of such a large number of power supplies, the Power Supply Interface Controller Module (PSICM), which is plugged into each power supply, was developed. It has a microprocessor, ARCNET interface, trigger signal input interface, and parallel interface to the power supply. The PSICM is not only an interface card but also controls synchronous operation of the multiple power supplies with an arbitrary tracking curve. For SuperKEKB we have developed the upgraded version of the PSICM. It has the fully backward compatible interface to the power supply. The enhanced features includes high speed ARCNET communication and redundant trigger signals. Towards the phase 1 commissioning of SuperKEKB, the construction of the magnet control system is ongoing. First mass production of 1000 PSICMs has been completed and their installation is in progress. The construction status of the magnet control system is presented in this paper.  
poster icon Poster WEPGF085 [2.287 MB]  
WEPGF091 A Formal Specification Method for PLC-based Applications PLC, controls, software, target 1
  • D. Darvas, E. Blanco Vinuela
    CERN, Geneva, Switzerland
  • I. Majzik
    BUTE, Budapest, Hungary
  The correctness of the software used in control systems has been always a high priority, as a failure can cause serious expenses, injuries or loss of reputation. To improve the quality of these applications, various development and verification methods exist. All of them necessitate a deep understanding of the requirements which can be achieved by a well-adapted formal specification method. In this paper we introduce a state machine and data-flow-based formal specification method tailored to PLC modules. This paper presents the practical benefits and new possibilities of this method, comprising consistency checking, PLC code generation, and checking equivalence between the specification and its previous versions or legacy code. The usage of these techniques can improve the level of understanding of the requirements and increase the confidence in the correctness of the implementation. Furthermore, they can help to apply formal verification techniques by providing formalised requirements.  
poster icon Poster WEPGF091 [0.565 MB]  
WEPGF092 PLCverif: A Tool to Verify PLC Programs Based on Model Checking Techniques PLC, controls, software, framework 1
  • D. Darvas, E. Blanco Vinuela, B. Fernández Adiego
    CERN, Geneva, Switzerland
  Model checking is a promising formal verification method to complement testing in order to improve the quality of PLC programs. However, its application typically needs deep expertise in formal methods. To overcome this problem, we introduce PLCverif, a tool that builds on our verification methodology and hides all the formal verification-related difficulties from the user, including model construction, model reduction and requirement formalisation. The goal of this tool is to make model checking accessible to the developers of the PLC programs. Currently, PLCverif supports the verification of PLC code written in ST (Structured Text), but it is open to other languages defined in IEC 61131-3. The tool can be easily extended by adding new model checkers.  
poster icon Poster WEPGF092 [3.741 MB]  
WEPGF094 A Modular Approach to Develop Standardized HVAC Control Systems with UNICOS CPC Framework controls, PLC, site, framework 1
  • W. Booth, R. Barillère, M. Bes, E. Blanco Vinuela, B. Bradu, M. Quilichini, M.Z. Zimny
    CERN, Geneva, Switzerland
  At CERN there are currently about 200 ventilation air handling units in production, used in many different applications, including building ventilation, pressurization of safe rooms, smoke extraction, pulsion/extraction of experimental areas (tunnel, cavern, etc), and the ventilation of the computing centre. The PLC applications which operate these installations are currently being revamped to a new framework (UNICOS CPC). This work began 3 years ago, and we are now in a position to standardize the development of these HVAC applications, in order to reduce the cost of initial development (including specification and coding), testing, and long-term maintenance of the code. In this paper the various improvements to the process with be discussed, and examples will be shown, which can thus help the community develop HVAC applications. Improvements include templates for the "Functional Analysis" specification document, standardized HVAC devices and templates for the PLC control logic, and automatically generated test documentation, to help during the Factory Acceptance Test (FAT) and Site Acceptance Test (SAT) processes.  
poster icon Poster WEPGF094 [1.149 MB]  
WEPGF102 Solving the Synchronization Problem in Multi-Core Embedded Real-Time Systems real-time, controls, embedded, hardware 1
  • F. Hoguin, S. Deghaye
    CERN, Geneva, Switzerland
  Multi-core CPUs have become the standard in embedded real-time systems. In such systems, where several tasks run simultaneously, developers can no longer rely on high priority tasks blocking low priority tasks. In typical control systems, low priority tasks are dedicated to receiving settings from the control room, and high priority real-time tasks, triggered by external events, control the underlying hardware based on these settings. Settings' correctness is of paramount importance and they must be modified atomically from a real-time task point of view. This is not feasible in multi-core environments using classic double-buffer approaches, mainly because real-time tasks can overlap, preventing buffer swaps. Other common synchronization solutions involving locking critical sections introduce unpredictable jitter on real-time tasks, which is not acceptable in CERN's control system. A lock-free, wait-free solution to this problem based on a triple buffer, guaranteeing atomicity no matter the number of concurrent tasks, is presented. The only drawback is potential synchronization delay on contention. This solution has been implemented and tested in CERN's real-time C++ framework.  
poster icon Poster WEPGF102 [0.433 MB]  
WEPGF106 CCLIBS: The CERN Power Converter Control Libraries controls, timing, software, real-time 1
  • Q. King, K.T. Lebioda, M. Magrans de Abril, M. Martino, R. Murillo-Garcia
    CERN, Geneva, Switzerland
  • A. Nicoletti
    EPFL, Lausanne, Switzerland
  Accurate control of power converters is a vital activity in large physics projects. Several different control scenarios may coexist, including regulation of a circuit's voltage, current, or field strength within a magnet. Depending on the type of facility, a circuit's reference value may be changed asynchronously or synchronously with other circuits. Synchronous changes may be on demand or under the control of a cyclic timing system. In other cases, the reference may be calculated in real-time by an outer regulation loop of some other quantity, such as the tune of the beam in a synchrotron. The power stage may be unipolar or bipolar in voltage and current. If it is unipolar in current, it may be used with a polarity switch. Depending on the design, the power stage may be controlled by a firing angle or PWM duty-cycle reference, or a voltage or current reference. All these different cases are supported by the CERN Converter Control Libraries (CCLIBS), which are open-source C libraries that include advanced reference generation and regulation algorithms. This paper introduces the libraries and reviews their origins, current status and future.  
poster icon Poster WEPGF106 [2.797 MB]  
WEPGF107 Multi-Host Message Routing in MADOCA II controls, GUI, network, free-electron-laser 1
  • T. Matsumoto, Y. Furukawa, K. Okada
    JASRI/SPring-8, Hyogo-ken, Japan
  MADOCA II is a next generation of Message And Database Oriented Control Architecture (MADOCA) and implemented into control system of SPring-8 and SACLA data acquisition (DAQ) system since 2013. In 2014, SACLA introduced a third beam line to increase the capacity of experiments. Then sophisticated control architecture needed to be developed to prevent miss operations among beamlines. In this paper, multi-host message routing in MADOCA II and its application to SALCA DAQ system to solve the problem is presented. In SACLA DAQ system, a master server was added which intermediates control messages between clients and equipment management servers. Since the access control can be centralized to the master server, reliable operation can be had by avoiding the influence by accidental modification of DAQ setting by end-users. The multi-host message routing was implemented to add an extension in MADOCA II by forwarding specific message objects to other hosts. Some technical issues related to messaging loop and time delay, are also addressed. It is also planned to utilize this technique to other cases in BL at SPring-8 where access control under firewall is required.  
poster icon Poster WEPGF107 [0.816 MB]  
WEPGF117 HIGH LEVEL APPLICATIONS FOR HLS-II controls, feedback, lattice, storage-ring 1
  • K. Xuan, C. Li, J.Y. Li, G. Liu, J.G. Wang, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  The Hefei light source was overhauled beginning from 2010 and completed in the end of 2013. The new light source is renamed as HLS-II. A set of high level application tools, including physical quantity based control IOC, lattice calibration tools, orbit feedback, etc., were developed for the light source commissioning and operation. These tools have been playing important roles in the commissioning and operation of the light source. This paper reports some critical applications.  
poster icon Poster WEPGF117 [0.679 MB]  
WEPGF118 Use of Tornado in KAT-­7 and MeerKAT Framework software, controls, framework, GUI 1
  • C.C.A. de Villiers, B. Xaia
    SKA South Africa, National Research Foundation of South Africa, Cape Town, South Africa
  Funding: SKA South Africa, National Research Foundation of South Africa, Department of Science and Technology, 3rd Floor, The Park, Park Road, Pinelands, Cape Town, South Africa, 7405.
The KAT­-7 and MeerKAT radio telescope control systems ( are built on a rich Python architecture. At its core, we use KATCP (Karoo Array Telescope Communications Protocol), a text­-based protocol that has served the projects very well. KATCP is supported by every device and connected software component in the system. However, its original implementation relied on threads to support asynchronous operations, and this has sometimes complicated the evolution of the software. Since MeerKAT (with 64 dishes) will be much larger and more complex than KAT-7, the Control and Monitoring (CAM) team investigated some alternatives to classical threading. We have adopted Tornado ( as the asynchronous engine for KATCP. Tornado, popular for Web applications, is built on a robust and very efficient coroutine paradigm that in turn is based on Python's generators. Co-routines avoid the complexity of thread re-entrancy and lifetime management, resulting in cleaner and more maintainable user code. This paper will describe our migration to a Tornado co-routine architecture, highlighting the benefits and some of the pitfalls and implementation challenges we have met.
poster icon Poster WEPGF118 [6.029 MB]  
WEPGF121 Operation Status of J-PARC Timing System and Future Plan timing, controls, GUI, network 1
  • N. Kamikubota, N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • N. Kikuzawa, F. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
  The beam commissioning of J-PARC started in November, 2006. Since then, the timing system of J-PARC accelerator complex has contributed stable beam operations of three accelerators: a 400-MeV linac (LI), a 3-GeV rapid cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The timing system handles two different repetition cycles: 25 Hz for LI and RCS, and 2.48-6.00 sec. for MR (MR cycle). In addition, the timing system is capable to provide beams to two different experimental facilities in single MR cycle: Material and Life Science Experimental Facility (MLF) and Neutrino Experimental Facility (NU), or, MLF and Hadron Experimental Facility (HD). Recently, a plan to introduce a new facility, Accelerator-Driven Transmutation Experimental Facility (ADS), around 2018, has been discussed. Studies for the timing system upgrade are started: change of the master repetition rate from 25Hz to 50 Hz, and a scheme to provide beams to three different experimental facilities in single MR cycle (MLF, NU and ADS or MLF, HD and ADS). This paper reviews the 8-year operation experience of the J-PARC timing system, followed by a present perspective of upgrade studies.  
poster icon Poster WEPGF121 [1.042 MB]  
WEPGF122 Real-Time Performance Improvements and Consideration of Parallel Processing for Beam Synchronous Acquisition (BSA) EPICS, timing, real-time, linac 1
  • K.H. Kim, S. Allison, T. Straumann, E. Williams
    SLAC, Menlo Park, California, USA
  Funding: Work supported by the the U.S. Department of Energy, Office of Science under Contract DE-AC02-76SF00515 for LCLS I and LCLS II.
Beam Synchronous Acquisition (BSA) provides a common infrastructure for aligning data to each individual beam pulse, as required by the Linac Coherent Light Source (LCLS). BSA allows 20 independent acquisitions simultaneously for the entire LCLS facility and is used extensively for beam physics, machine diagnostics and operation. BSA is designed as part of LCLS timing system and is currently an EPICS record based implementation, allowing timing receiver EPICS applications to easily add BSA functionality to their own record processing. However, the non-real-time performance of EPICS record processing and the increasing number of BSA devices has brought real-time performance issues. The major reason for the performance problem is likely due to the lack of separation between time-critical BSA upstream processing and non-critical downstream processing. BSA is being improved with thread level programming, breaking the global lock in each BSA device, adding a queue between upstream and downstream processing, and moving out the non-critical downstream to a lower priority worker thread. The use of multiple worker threads for parallel processing in SMP systems is also being investigated.
poster icon Poster WEPGF122 [1.665 MB]  
WEPGF132 An Update on CAFE, a C++ Channel Access Client Library, and its Scripting Language Extensions interface, EPICS, controls, network 1
  • J.T.M. Chrin
    PSI, Villigen PSI, Switzerland
  CAFE (Channel Access interFacE) is a C++ client library that offers a comprehensive and easy-to-use Channel Access (CA) interface to the Experimental Physics and Industrial Control System (EPICS). The code base has undergone significant refactoring to make the internal structure more comprehensible and easier to interpret, and further methods have been implemented to increase its flexibility in readiness to serve as the CA host in fourth-generation and scripting languages for use at the SwissFEL, Switzerland's X-ray Free-Electron Laser facility. A number of specific design features are presented, including policies that provide control over configurable components that govern the behaviour of interactions, and the methodology that guarantees that the outcome of all remote method invocations are captured with integrity in every eventuality, thereby ensuring reliability and stability. An account is also given on newly created bindings for the Cython programming language, which offers a major performance improvement to Python developers, and on an update to CAFE's MATLAB Executable (MEX) file.  
poster icon Poster WEPGF132 [0.297 MB]  
WEPGF133 TINE Studio, Making Life Easy for Administrators, Operators and Developers. controls, interface, database, GUI 1
  • P. Duval, M. Lomperski
    DESY, Hamburg, Germany
  • J. Bobnar
    Cosylab, Ljubljana, Slovenia
  A mature control system will provide central services such as alarm handling, archiving, location and naming, debugging, etc. along with development tools and administrative utilities. It has become common to refer to the collection of these services as a 'studio'. Indeed Control System Studio (CSS)* strives to provide such services independent of the control system protocol. Such a 'one-size-fits-all' approach is likely, however, to focus on features and behavior of the most prominent control system protocol in use, providing a good fit there but perhaps offering only a rudimentary fit for 'other' control systems. TINE** is for instance supported by CSS but is much better served by making use of TINE Studio. This paper reports here on the rich set of services and utilities comprising TINE Studio.
poster icon Poster WEPGF133 [2.523 MB]  
WEPGF150 A HTML5 Web Interface for JAVA DOOCS Data Display interface, controls, network, hardware 1
  • E. Sombrowski, R. Kammering, K.R. Rehlich
    DESY, Hamburg, Germany
  JAVA DOOCS Data Display (JDDD) is the standard tool for developing control system panels for the FLASH facility and European XFEL. The panels are mainly started on DESY campus. For remote monitoring and expert assistance a secure, fast and light-weight access method is required. One possible solution is using HTML5 as transport protocol, because it is available on many common platforms including mobile ones. For this reason an HTML5 version of JDDD, running in a Tomcat application server, was developed. WebSocket technology is used to transfer the panel image to the browser. In the other direction, mouse events are sent back from the browser to the Tomcat server. Now thousands of existing JDDD panels can be accessed from remote using standard web technology. No special browser plugins are required. This article discusses the general issues of the web-based interaction with the control system such as security, usability, network traffic and scalability, and presents the WebSocket approach.  
poster icon Poster WEPGF150 [1.028 MB]  
WEPGF155 Improving Software Services Through Diagnostic and Monitoring Capabilities controls, software, diagnostics, monitoring 1
  • P. Charrue, M. Buttner, F. Ehm, P. Jurcso
    CERN, Geneva, Switzerland
  CERN's Accelerator Controls System is built upon a large set of software services which are vital for daily operations. It is important to instrument these services with sufficient diagnostic and monitoring capabilities to reduce the time to locate a problem and to enable pre-failure detection by surveillance of process internal information. The main challenges here are the diversity of programs (C/C++ and Java) , real-time constraints, the distributed environment and diskless systems. This paper describes which building blocks have been developed to collect process metrics and logs, software deployment and release information and how equipment/software experts today have simple and time-saving access to them using the DIAMON console. This includes the possibility to remotely inspect the process (build-time, version, start time, counters,..) and change its log levels for more detailed information.  
THHA3O01 The Evolution of the ALICE Detector Control System detector, controls, experiment, electronics 1
  • P.Ch. Chochula, A. Augustinus, P.M. Bond, A.N. Kurepin, M. Lechman, O. Pinazza
    CERN, Geneva, Switzerland
  • A.N. Kurepin
    RAS/INR, Moscow, Russia
  • O. Pinazza
    INFN-Bologna, Bologna, Italy
  The ALICE Detector Control System has provided its service since 2007. Its operation in the past years proved that the initial design of the system fulfilled all expectations and allowed the evolution of the detectors and operational requirements to follow. In order to minimize the impact of the human factor, many procedures have been optimized and new tools have been introduced in order to allow the operator to supervise about 1 000 000 parameters from a single console. In parallel with the preparation for new runs after the LHC shutdown a prototyping for system extensions which shall be ready in 2018 has started. New detectors will require new approaches to their control and configuration. The conditions data, currently collected after each run, will be provided continuously to a farm containing 100 000 CPU cores and tens of PB of storage. In this paper the DCS design, deployed technologies, and experience gained during the 7 years of operation will be described and the initial assumptions with the current setup will be compared. The current status of the developments for the upgraded system, which will be put into operation in less than 3 years from now, will also be described.  
slides icon Slides THHA3O01 [4.551 MB]  
THHA2O03 Message Signalled Interrupts in Mixed-Master Control controls, target, FPGA, network 1
  • W.W. Terpstra, M. Kreider
    GSI, Darmstadt, Germany
  Timing Receivers in the FAIR control system are a complex composition of multiple bus-connected components. The bus is composed of Wishbone crossbars which connect master devices to their controlled slaves. These crossbars are in turn connected in master-slave relationships forming a DAG where source nodes are masters, interior nodes are crossbars, and terminal nodes are slaves. In current designs, masters may be found at multiple levels in the composed bus. Bus masters range from embeddedμcontrollers, to DMA controllers, to bridges from PCIe, VME, USB, or the network. In such a system, delivery of interrupts from controlled slaves to masters is non-trivial. The master may reside multiple levels up the hierarchy. In the case of network control, the master may be kilometres of fibre away. Our approach is to use message signalled interrupts (MSI). This is especially important as a particular slave may be controlled by different masters depending on the use-case. MSI allows the routing of interrupts via the same topology used in master-slave control. This paper explores the benefits, disadvantages, and challenges uncovered by our current implementation.  
slides icon Slides THHA2O03 [0.758 MB]  
THHC2O03 Replacing the Engine in Your Car While You Are Still Driving It timing, interface, controls, network 1
  • E. Björklund
    LANL, Los Alamos, New Mexico, USA
  Funding: US Department of Energy under contract DC-AC52-06NA25396.
Replacing your accelerator's timing system with a completely different architecture is not something that happens very often. Perhaps even rarer is the requirement that the replacement not interfere with the accelerator's normal operational cycle. In 2014, The Los Alamos Neutron Science Center (LANSCE) began the first phase of a multi-year rolling upgrade project which will eventually result in the complete replacement of the low-level RF system, the timing system, the industrial I/O system, the beam-synchronized data acquisition system, the fast-protect reporting system, and much of the diagnostic equipment. These projects are mostly independent of each other, with their own installation schedules, priorities, and time-lines. All of them, however, must interface with the timing system. This paper will focus on the timing system replacement project, its conversion from a centralized discrete signal distribution system to a more distributed event-driven system, and the challenges faced by having to interface with both the old and new equipment until the upgrade is completed.
slides icon Slides THHC2O03 [2.341 MB]  
THHD3O08 Upgrades to the Infrastructure and Management of the Operator Workstations and Servers for Run 2 of the CERN Accelerator Complex controls, network, site, cryogenics 1
  • A. Bland, S.T. Page
    CERN, Geneva, Switzerland
  The Controls Group of the CERN Beams Department provides more than 400 operator workstations in the CERN Control Centre (CCC) and technical buildings of the accelerators, plus 300 servers in the server room (CCR) of the CCC. During the long shutdown of the accelerators that started in February 2013, many upgrades were done to improve this infrastructure in view of the higher-energy LHC run. The Engineering Department improved the electrical supply with fully redundant UPS, on-site diesel generators and for the CCR, water and air cooling systems. The Information Technology Department increased network bandwidth for the servers by a factor of 10 and introduced a pilot multicast service for the video streaming of the accelerator status displays and beam cameras. The Controls Group removed dependencies on network file systems for the operator accounts they manage for the Linacs, Booster, PS, ISOLDE, AD, CTF3, SPS, LHC and cryogenics. It also moved away from system administration based on shell scripts to using modern tools like version-controlled Ansible playbooks, which are now used for installation, day-to-day re-configuration and staged updates during technical stops.  
slides icon Slides THHD3O08 [21.304 MB]  
FRB3O02 Status of the European Spallation Source Control System controls, EPICS, neutron, software 1
  • T. Korhonen, R. Andersson, F. Bellorini, S.L. Birch, D.P. Brodrick, H. Carling, J. Cereijo García, R.N. Fernandes, L. Fernandez, B. Gallese, S.R. Gysin, E. Laface, N. Levchenko, M. Mansouri Sharifabad, R. Mudingay, A. Nordt, D. Paulic, D.P. Piso, K. Rathsman, M. Reščič, G. Trahern, M. Zaera-Sanz
    ESS, Lund, Sweden
  • N. Claesson, U. Rojec, K. Strniša, A.A. Söderqvist
    Cosylab, Ljubljana, Slovenia
  The European Spallation Source (ESS) is a collaboration of 17 European countries to build the world's most powerful neutron source for research. ESS has entered the construction phase and the plan is to produce first neutrons by 2019 and to complete the construction by 2025. The Integrated Control System Division (ICS) is responsible to provide control systems for the whole facility. The unprecented beam power of 5 MW and the construction of the facility with many components contributed in-kind presents a number of challenges to the control system. Systems have to be specified so that the work can be effectively shared between the contributors and on-site staff. Control system components need to provide a level of performance that can support the operation of the facility, be standardized so that integration to the facility can be done during a short installation period and be maintainable by the in-house staff after the construction has finished. This paper will outline the plans and principles that will be used to construct the control systems. The selected technologies and standards will be presented, as well as the plans for integration.