Keyword: power-supply
Paper Title Other Keywords Page
MOC3O04 System Identification and Robust Control for the LNLS UVX Fast Orbit Feedback controls, feedback, network, vacuum 1
 
  • D.O. Tavares
    LNLS, Campinas, Brazil
  • D.R. Grossi
    Sao Paulo University, São Carlos Campus, São Carlos, Brazil
 
  This paper describes the optimization work carried out to improve the performance of the LNLS UVX fast orbit feedback system. Black-box system identification techniques were applied to model the dynamic behavior of BPM electronics, orbit correctors, communication networks and vacuum chamber eddy currents. Due to the heterogeneity on the dynamic responses among several units of those subsystems, as well as variations on the static response matrix due to accelerator optics changes during operation, robust control techniques were employed to achieve appropriate closed-loop performance and robustness.  
slides icon Slides MOC3O04 [3.792 MB]  
 
MOPGF001 Use Interrupt Driven Mode to Redesign an IOC for Digital Power Supply at SSC-LINAC controls, linac, Ethernet, EPICS 1
 
  • S. An, K. Gu, X.J. Liu, J.Q. Wu, W. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  SSC-LINAC control system is based on EPICS architecture. The sub control system of digital power supplies is a kind of IOC send and receive custom command via Ethernet and TCP/IP protocol. The old IOC is designed to use period scan mode IOC, and there are so many digital power supplies, that we can't make sure every connect condition of digital power supply is fine. IOC must wait a long time if one of them can't connect correctly and other digital power supply's PV may also be blocked. An IOC that uses interrupt driven mode to avoid the shortcoming was designed. This will be described in this paper.  
poster icon Poster MOPGF001 [0.853 MB]  
 
MOPGF002 Magnet Corrector Power Supply Controller for LCLS-I controls, interface, feedback, EPICS 1
 
  • S. Babel, B. Lam, K. Luchini, J.J. Olsen, T. Straumann, E. Williams, C. Yee
    SLAC, Menlo Park, California, USA
 
  The MCOR-12[Magnet Corrector] is a 16-channel modular architecture, precision magnet driver, capable of providing bipolar output currents in the range from 12A to +12A. A single, unregulated bulk power supply provides the main DC power for the entire crate. Currently the MCORs have a 1000ppm regulation on the B-field. The MCOR controller card upgrades, existing LCLS-I and future LCLS-II needed, controls for Magnet Corrector Power Supplies. The project shifts the existing functionality of the VME based DAC and SAM and an Allen Bradley PLC into a new slot-0 card residing in the MCOR chassis. Elimination of the VME crate and the PLC will free up rack space to be used in future. The new interface card has a long term stability of 100 ppm and monitors ground fault currents and various other interlocks for the MCOR power supplies. The controller can interface to EPICS Channel Access and Fast Feedback system at SLAC using two Gigabit Ethernet ports and has an FPGA based EVR for getting 'time stamps' from the Event Generator system at SLAC. The EPICS control system along with embedded diagnostic features will allow for enhanced remote control and monitoring of the power supplies.
*S. Babel, S. Cohen, "Digital Control Interface for Bipolar Corrector Power, BiRa Systems, Albuquerque **G.E. Leyh, "A Multi-Channel Corrector Magnet Controller"
 
poster icon Poster MOPGF002 [1.646 MB]  
 
MOPGF023 Update of Power Supply Control System at the SAGA Light Source Storage Ring controls, storage-ring, PLC, target 1
 
  • Y. Iwasaki, T. Kaneyasu, S. Koda, Y. Takabayashi
    SAGA, Tosu, Japan
 
  The update of control system at the SAGA Light Source storage ring power supplies is in progress for improving the ramp-up speed (from 255 MeV to 1.4 GeV) and for easily changing the stored beam energy. By replacing the CPU unit of PLC used for control of the power supplies, the ramp-up time was reduced from 4 to 2 minutes in a test bench prepared for the upgrade system. Currently the allowable beam energy is restricted to some fixed values in the ramp-up operation due to the original specification of the PLC ladder program. To operate storage ring at an arbitrary energy, the algorism used in the PLC program has been improvement. Energy dependent measurements (betatron-tune, beam size, and beam half-lifetime) will be carried out by using the updated control system. The upper layer of the control system using the National Instrument LabVIEW and ActiveXCA was also reconstructed for flexible GUI.  
poster icon Poster MOPGF023 [3.785 MB]  
 
MOPGF111 TANGO Integration of a Specific Hardware through HTTP-server controls, TANGO, software, kicker 1
 
  • A. Panov, A.A. Korepanov
    BINP SB RAS, Novosibirsk, Russia
 
  MAX IV and Solaris are new synchrotrons third generation. MAX IV synchrotron consist of 1.5 GeV storage ring, 3.0 GeV storage ring and linac; it is located in Lund, Sweden. Solaris synchrotron is a replica of the 1.5 GeV storage ring of the MAX IV project; it is located in Kraków, Poland. Structure of storage rings contains several pulse magnets (kicker and pinger). Control system of pulse power supplies based on LTR crate with several modules (ADC, DAC, input/output registers etc.). LTR crate is product Russian firm L-CARD. LTR crate is crate with integrated controller (ADSP Blackfin BF537) and PLC EP1C30 with direct connection to modules. In order to communicate with crate native LTR-server is used. LTR-server is a Windows application based on use of sockets. Control system of MAX IV and Solaris uses TANGO. For integration LTR-crates in final structure, special software gateway (csMAXIVltr) is used. This gateway is a set of several specific Windows applications implemented by using Qt5 libraries. Gateway allow communicating TANGO- server with crate through built-in HTTP-server. In final structure of control system csMAXIVltr will be work on a Windows virtual machine.  
poster icon Poster MOPGF111 [3.338 MB]  
 
MOPGF117 The Control System for Trim-Coil Relay-Selectors in J-PARC MR controls, EPICS, PLC, operation 1
 
  • K.C. Sato, N. Kamikubota, N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • S. Igarashi
    KEK, Ibaraki, Japan
  • S.Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
 
  In J-PARC main ring, each of the main magnets (Dipole, Quadrupole, and Sextupole) has a trim-coil. The basic aim of trim-coil is to correct small deviation of each magnetic field. In addition, we have used them for other purposes, for example: (1) in Beam-Based-Alingnment studies, (2) as flux monitors, and (3) to make a short-circuit to reduce ripples of magnetic field. At a moment, trim-coils can be used for only one purpose. Relay-switches were introduced to change trim-coil connection to a device, which corresponds to the selected purpose. When the purpose is switched, 1,200 on-site relays have to be changed manually, distributed in three buildings. Thus, a control system for trim-coil relay-selectors was developed in winter, 2014-2015. EPICS tools and environment are used to develop the system. The system comprises PLC I/O modules with controller running EPICS on Linux. The system will be in operation after March, 2015. By using the system, a much easier switching of relay-switches than before, is expected.  
poster icon Poster MOPGF117 [0.498 MB]  
 
MOPGF146 Safety Interlock System for a Proton Linac Accelerator controls, rfq, ion, ion-source 1
 
  • Y. Zhao, Y.Y. Du, J. He, F. Liu, Q. Ye
    IHEP, Beijing, People's Republic of China
 
  The C-ADS Injector-I is an experimental proton machine in IHEP. An interlock system based on redundancy PLC was developed for machine protection and personnel safety. Device status, radiation dose, temperature of cavities and chambers are collected for machine state judge and interlock. A MPS (Machine Protection System) work together with the interlock system in the control loop, and protect the machine in four levels for different situation.  
 
MOPGF164 Status of the EPICS-Based Control and Interlock System of the Belle II PXD controls, EPICS, detector, database 1
 
  • M. Ritzert
    Heidelberg University, Heidelberg, Germany
 
  Funding: This work has been supported by the German Federal Ministry of Education and Research (BMBF) under Grant Identifier 05H12VHH.
The Belle II e+/e collider experiment at KEK will include a new pixelated detector (PXD) based on DEPFET technology as the innermost layer. This detector requires a complex control and readout infrastructure consisting of several ASICs and FPGA boards. This paper present the architecture and EPICS-based implementation of the control, alarm, and interlock systems, their interface to the various subsystems, and to the NSM2-based Belle II run-control. The complex startup sequence is orchestrated by a statemachine. CSS is used to implement the user interface. The alarm system uses CSS/BEAST, and is designed to minimize spurious alarms. The interlock system consists of two main parts: a hardware-based system that triggers on adverse environmental (temperature, humidity, radiation) conditions, and a software-based system. Strict monitoring including the use of heartbeats ensures permanent protection and fast reaction times. Especially the power supply system is monitored for malfunctions, and all user inputs are verified before they are sent to the hardware. The control system also incorporates archiving, logging, and reporting in a uniform workflow for the ease of daily operation.
For the DEPFET Collaboration.
 
poster icon Poster MOPGF164 [6.742 MB]  
 
WEPGF006 Magnet Server and Control System Database Infrastructure for the European XFEL database, controls, electron, quadrupole 1
 
  • L. Fröhlich, P.K. Bartkiewicz, M. Walla
    DESY, Hamburg, Germany
 
  The linear accelerator of the European XFEL will use more than 1400 individually powered electromagnets for beam guidance and focusing. Front-end servers establish the low-level interface to several types of power supplies, and a middle layer server provides control over physical parameters like field or deflection angle in consideration of the hysteresis curve of the magnet. A relational database system with stringent consistency checks is used to store configuration data. The paper focuses on the functionality and architecture of the middle layer server and gives an overview of the database infrastructure.  
 
WEPGF034 The Power Supply Control System of CSR controls, database, operation, ion 1
 
  • W. Zhang, S. An, S.Z. Gou, K. Gu, P. Li, Y.P. Wang, M. Yue
    IMP/CAS, Lanzhou, People's Republic of China
 
  This paper gives a brief description of the power supply control system for Cooler Storage Ring (CSR). It introduces in detail mainly of the control system architecture, hardware and software. We use standard distributed control system (DCS) architecture. The software is the standard three-layer structure. OPI layer realizes data generation and monitoring. The intermediate layer is a data processing and transmission. Device control layer performs data output of the power supply. We use ARM + DSP controller designed by ourselves for controlling the power supply output. At the same time, we have adopted the FPGA controller designed for timing for power supply control in order to meet the requirements of accelerator synchronized with the output of the power supply.  
poster icon Poster WEPGF034 [0.254 MB]  
 
WEPGF085 The Construction of the SuperKEKB Magnet Control System interface, controls, operation, EPICS 1
 
  • T.T. Nakamura, A. Akiyama, M. Iwasaki, H. Kaji, J.-I. Odagiri, S. Sasaki
    KEK, Ibaraki, Japan
  • T. Aoyama, T. Nakamura, K. Yoshii
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • N. Yoshifuji
    EJIT, Hitachi, Ibaraki, Japan
 
  There were more than 2500 magnet power supplies for KEKB storage rings and injection beam transport lines. For the remote control of such a large number of power supplies, the Power Supply Interface Controller Module (PSICM), which is plugged into each power supply, was developed. It has a microprocessor, ARCNET interface, trigger signal input interface, and parallel interface to the power supply. The PSICM is not only an interface card but also controls synchronous operation of the multiple power supplies with an arbitrary tracking curve. For SuperKEKB we have developed the upgraded version of the PSICM. It has the fully backward compatible interface to the power supply. The enhanced features includes high speed ARCNET communication and redundant trigger signals. Towards the phase 1 commissioning of SuperKEKB, the construction of the magnet control system is ongoing. First mass production of 1000 PSICMs has been completed and their installation is in progress. The construction status of the magnet control system is presented in this paper.  
poster icon Poster WEPGF085 [2.287 MB]  
 
FRB3O01 Commissioning of the TPS Control System controls, EPICS, interface, Ethernet 1
 
  • C.Y. Liao, Y.-T. Chang, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Huang, C.H. Kuo, D. Lee, C.-J. Wang, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Con¬trol sys¬tem for the Tai¬wan Pho¬ton Source (TPS) has been completed in 2014. Com¬missioning of the accelerator system is in proceeding. Electron beam were stored at the stor¬age ring and emit first light in De¬cem¬ber 31, 2014. TPS con¬trol sys¬tem adopts EPICS toolk¬its as its frame¬works. The sub¬sys¬tems con¬trol in¬ter¬faces in¬clude event based tim¬ing sys¬tem, Eth¬er¬net based power sup¬ply con¬trol, cor¬rec¬tor power sup¬ply con¬trol, PLC-based pulse mag¬net power sup¬ply con¬trol and ma¬chine pro¬tec¬tion system, in¬ser¬tion de¬vices mo¬tion con¬trol sys¬tem, var¬i¬ous di¬ag¬nos¬tics re¬lated con¬trol en¬vi¬ron¬ment, and etc. The stan¬dard hard¬ware com¬po¬nents had been in¬stalled and inte¬grated, and the var¬i¬ous IOCs (Input Out¬put Con¬troller) had been im¬ple¬mented as var¬i¬ous sub¬sys¬tems con¬trol platforms. Low level and high level hard¬ware and software are tested in¬ten¬sively in 2014 and final re¬vise to pre¬pare for rou¬tine op¬er¬a¬tion is under way. Ef¬forts will be sum¬ma¬rized at this paper.