Keyword: target
Paper Title Other Keywords Page
MOD3O03 Shot Rate Improvement Strive for the National Ignition Facility (NIF) alignment, laser, controls, diagnostics 1
  • G.K. Brunton, G.A. Bowers, A.D. Conder, J.-M.G. Di Nicola, P. Di Nicola, M.A. Fedorov, B.T. Fishler, R. Fleming, D.H. Kalantar, G. Lau, D.G. Mathisen, V.J. Miller Kamm, V. Pacheu, M. Paul, R.K. Reed, J. Rouse, R.J. Sanchez, M.J. Shaw, E.A. Stout, S. Weaver, E.F. Wilson
    LLNL, Livermore, California, USA
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy. The energy, temperatures and pressures capable of being generated allow scientists the ability to generate conditions similar to the center of the sun and explore physics of planetary interiors, supernovae, black holes and thermonuclear burn. NIF has transitioned to a 24x7 operational facility and in the past year significant focus has been placed on increasing the volume of experimental shots capable of being conducted so as to satisfy the demand from the wide range of user groups. The goal for the current fiscal year is a shot rate of 300 (> 50% increase over the previous year), increasing to a sustainable rate of 400 the year after. The primary focus areas to achieve these increases are; making more shot time available, improvements in experiment scheduling, and reducing the duration of a shot cycle. This paper will discuss the control system improvements implemented and planned to reduce the shot cycle duration and the systematic approaches taken to identify and prioritize them.
slides icon Slides MOD3O03 [3.415 MB]  
MOPGF023 Update of Power Supply Control System at the SAGA Light Source Storage Ring controls, storage-ring, PLC, power-supply 1
  • Y. Iwasaki, T. Kaneyasu, S. Koda, Y. Takabayashi
    SAGA, Tosu, Japan
  The update of control system at the SAGA Light Source storage ring power supplies is in progress for improving the ramp-up speed (from 255 MeV to 1.4 GeV) and for easily changing the stored beam energy. By replacing the CPU unit of PLC used for control of the power supplies, the ramp-up time was reduced from 4 to 2 minutes in a test bench prepared for the upgrade system. Currently the allowable beam energy is restricted to some fixed values in the ramp-up operation due to the original specification of the PLC ladder program. To operate storage ring at an arbitrary energy, the algorism used in the PLC program has been improvement. Energy dependent measurements (betatron-tune, beam size, and beam half-lifetime) will be carried out by using the updated control system. The upper layer of the control system using the National Instrument LabVIEW and ActiveXCA was also reconstructed for flexible GUI.  
poster icon Poster MOPGF023 [3.785 MB]  
MOPGF123 Upgrades of Temperature Measurements and Interlock System for the Production Target at J-PARC Hadoron Experimental Facility extraction, EPICS, proton, hadron 1
  • K. Agari, Y. Morino, Y. Sato, A. Toyoda
    KEK, Tsukuba, Japan
  Funding: This work was supported by Grant-in-Aid (No. 26800153) for Young Scientists (B) of the Japan Ministry of Education, Culture, Sports, Science and Technology [MEXT].
Hadron experimental facility is designed to handle intense slow-extraction proton beam from Main Ring (MR) of Japan Proton Accelerator Research Complex (J-PARC). On May 23, 2013, 2×1013 proton beams were instantaneously extracted to Hadron experimental facility in 5 milliseconds due to the malfunction of the power supply for Extraction Quadrapole magnet for a spill feedback at MR. Therefore the production target made of gold was locally damaged at Hadron experimental facility because of overheat by absorbing proton beam. After the accident we upgraded target temperature measurements with 100 milliseconds sampling and synchronization with beam spills in order to promptly detect damage to the production target as soon as possible. In addition, we also upgraded temperature trend graphs and an interlock system in order to figure out the state of the production target. Currently Hadron experimental facility ready to accept slow-extraction proton beam. The results of the temperature measurements and the interlock system for the production target during beam operation at J-PARC Hadron experimental facility, will be reported in this paper.
poster icon Poster MOPGF123 [0.497 MB]  
MOPGF136 ADaMS 3: An Enhanced Access Control System for CERN controls, interface, GUI, operation 1
  • P. Martel, Ch. Delamare, G. Godineau, R. Nunes
    CERN, Geneva, Switzerland
  ADaMS is CERN's Access Distribution and Management System. It evaluates access authorizations to more than 400 zones and for more than 35k persons. Although accesses are granted based on a combination of training courses followed, administrative authorizations and the radio-protection situation of an individual, the policies and technicalities are constantly evolving along with the laboratory's activities; the current version of ADaMS is based on a 7 year old design, and is starting to show its limits. A new version of ADaMS (3) will allow improved coordination with CERN's scheduling and planning tools (used heavily during technical shutdowns, for instance), will allow CERN's training catalog to change without impacting access management and will simplify and reduce the administrative workload of granting access. The new version will provide enhanced self-services to end users by focusing on access points (the physical barriers) instead of safety zones. ADaMS 3 will be able to cope better with changing and new requirements, as well as the multiplication of access points. The project requires the cooperation of a dozen services at CERN, and should take 18 months to develop.  
poster icon Poster MOPGF136 [1.258 MB]  
MOPGF174 Laser - Driven Hadron Therapy Project laser, hadron, ion, proton 1
  • F. Scarlat, A.M. Scarisoreanu
    INFLPR, Bucharest - Magurele, Romania
  • Fl. Scarlat
    Bit Solutions, Bucharest, Romania
  • N. Verga
    Univerity of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
  The laser beam (10 PW, 15 fs, 150 J, 1023 W/cm2) generated by APOLLON Laser System, now under construction on Magurele Platform near Bucharest may also be applied in radiotherapy. Starting from this potential application, location of malign tumors in patient may be situated, e.g., superficial (≤5 cm), semi-deep (5-10 cm) and profound (>10-40 cm). This paper presents the main physical parameters of a research project for a therapy based on hadrons controlled by laser, for the treatment of superficial and semi-deep tumors. Energies required for pin-pointing the depth of such tumors are 50-117 MeV for protons and 100'216 MeV/u for carbon ions. Hadron beams with such energies can be generated by the mechanism Radiation Pressure Acceleration (RPA). Besides, the control systems to provide the daily absorbed dose from the direct and indirect ionizing radiation at the level of the malign tumor of 2 Gy in 1 or 2 minutes with expanded uncertainty of 3 % are presented.  
TUB3O04 The LMJ System Sequences Adaptability (French MegaJoule Laser) laser, controls, GUI, database 1
  • Y. Tranquille-Marques, J. Fleury, J. Nicoloso
    CEA, LE BARP cedex, France
  The French Atomic and Alternative Energies Commission (CEA : Commissariat à l'Energie Atomique et aux Energies Alternatives) is currently building the Laser MegaJoule facility. In 2014, the first 8 beams and the target area were commissioned and the first physics campaign (a set of several shots) was achieved. On the LMJ, each shot requires more or less the same operations except for the settings that change from shot to shot. The supervisory controls provide five semi-automated sequence programs to repeat and schedule actions on devices. Three of them are now regularly used to drive the LMJ. Sequence programs need to have different qualities such as flexibility, contextual adaptability, reliability and repeatability. Currently, the calibration shots sequence drives 328 actions towards local control systems. However, this sequence is already dimensioned to drive 22 bundles, which will lead to manage almost 5300 actions. This paper introduces the organization of the control system used by sequence programs, the sequence adjustments files, the grafcets of sequences, the GUIs, the software and different tools used to control the facility.  
slides icon Slides TUB3O04 [11.268 MB]  
TUC3O03 Development and Realisation of the ESS Machine Protection Concept proton, neutron, operation, monitoring 1
  • A. Nordt, R. Andersson, T. Korhonen, A. Monera Martinez, M. Zaera-Sanz
    ESS, Lund, Sweden
  • A. Apollonio, R. Schmidt
    CERN, Geneva, Switzerland
  • C. Hilbes
    ZHAW, Winterthur, Switzerland
  ESS is facing extremely high beam availability requirements and is largely relying on custom made, very specialised, and expensive equipment for its operation. The proton beam power with an average of 5MW per pulse will be unprecedented and its uncontrolled release can lead to serious damage of the delicate equipment, causing long shutdown periods, inducing high financial losses and, as a main point, interfering drastically with international scientific research programs relying on ESS operation. Implementing a fit-for-purpose machine protection concept is one of the key challenges in order to mitigate these risks. The development and realisation of the measures needed to implement such concept to the correct level in case of a complex facility like the ESS, requires a systematic approach, and will be discussed in this paper.  
slides icon Slides TUC3O03 [11.927 MB]  
TUD3I01 The LMJ Target Diagnostics Control System Architecture TANGO, diagnostics, controls, interface 1
  • S. Perez, T. Caillaud
    CEA, Arpajon, France
  The French Laser Megajoule (LMJ) is, behind the US NIF, the second largest inertial fusion facility in the World. The main activity of this facility is the acquisition of several physical phenomena as neutron, gamma, X rays…produced by the indirect attack of hundreds of high power laser beams on targets through measurement devices called "target diagnostics". More than 30 diagnostics will be installed and driven in a huge and complex integrated computer control system. The aim of this paper is to describe an architecture based on the Tango open source software for the very low level control system, Python language for the development of drivers and the French commercial PANORAMA software as the main high level SCADA. This choice leads to guaranty the evolution of the middleware software architecture of this facility supposed to be operated during dozen of years with the capability of using many instruments including sustainability.  
slides icon Slides TUD3I01 [29.535 MB]  
WEA3O03 Towards Building Reusability in Control Systems - a Journey controls, DSL, TANGO, framework 1
  • P. Patwari, A.S. Banerjee, G. Muralikrishna, S. Roy Chaudhuri
    Tata Research Development and Design Centre, Pune, India
  Development of similar systems leads to a strong motivation for reuse. Our involvement with three large experimental physics facilities led us to appreciate this better in the context of development of their respective monitoring and control (M&C) software. We realized that the approach to allowing reuse follows the onion skin model that is, building re-usability in each layer in the solution to the problem. The same motivation led us to create a generic M&C architecture through our first collaborative effort which resulted into a fairly formal M&C domain model. The second collaboration showed us the need to have a common vocabulary that could be used across multiple systems to specify respective domain specific M&C solutions at higher levels of abstraction implemented using the generic underlying M&C engine. This resulted in our definition and creation of a domain specific language for M&C. The third collaboration leads us to imagine capturing domain knowledge using the common vocabulary which will substantially further reuse, this thought is already demonstrated through a preliminary prototype. We discuss our learning through this journey in this paper.  
slides icon Slides WEA3O03 [1.812 MB]  
WEPGF021 Design of Control Networks for China Initiative Accelerator Driven System network, Ethernet, controls, operation 1
  • Z. He, W. Cui, Y.H. Guo, Y. He, Y. Luo, Q. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  In this paper, we report the conceptual design of control networks used in the control system for China initiative accelerator driven sub-critical (ADS) facility which consists of two accelerator injectors, a main accelerator, a spallation target and a reactor. Because different applications have varied expectations on reliability, latency, jitter and bandwidth, the following networks have been designed for the control systems, i.e. a central operation network for the operation of accelerators, target, and reactor; a reactor protection network for preventing the release of radioactivity to the environment; a personnel protection network for protecting personnel against unnecessary exposure to hazards; a machine protection network for protecting the machines in the ADS system; a time communication network for providing timing and synchronization for three accelerators; and a data archiving network for recording important measurement results from accelerators, target and reactor. Finally, we discuss the application of high-performance Ethernet technologies, such as Ethernet ring protection protocol, in these control networks for CIADS.  
poster icon Poster WEPGF021 [0.192 MB]  
WEPGF091 A Formal Specification Method for PLC-based Applications PLC, controls, software, operation 1
  • D. Darvas, E. Blanco Vinuela
    CERN, Geneva, Switzerland
  • I. Majzik
    BUTE, Budapest, Hungary
  The correctness of the software used in control systems has been always a high priority, as a failure can cause serious expenses, injuries or loss of reputation. To improve the quality of these applications, various development and verification methods exist. All of them necessitate a deep understanding of the requirements which can be achieved by a well-adapted formal specification method. In this paper we introduce a state machine and data-flow-based formal specification method tailored to PLC modules. This paper presents the practical benefits and new possibilities of this method, comprising consistency checking, PLC code generation, and checking equivalence between the specification and its previous versions or legacy code. The usage of these techniques can improve the level of understanding of the requirements and increase the confidence in the correctness of the implementation. Furthermore, they can help to apply formal verification techniques by providing formalised requirements.  
poster icon Poster WEPGF091 [0.565 MB]  
WEPGF096 Managing a Real-time Embedded Linux Platform with Buildroot Linux, software, network, controls 1
  • J.S. Diamond, K.S. Martin
    Fermilab, Batavia, Illinois, USA
  Funding: This work was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359
Developers of real-time embedded software often need to build the operating system kernel, tools and supporting applications from source to work with the differences in their hardware configuration. The first attempt to introduce Linux-based real-time embedded systems into the Fermilab accelerator controls system used this approach but it was found to be time-consuming, difficult to maintain and difficult to adapt to different hardware configurations. Buildroot is an open source build system with a menu-driven configuration tool (similar to the Linux kernel build system) that automates this process. A customized Buildroot system has been developed for use in the Fermilab accelerator controls system that includes several hardware configuration profiles (including Intel, ARM and PowerPC) and packages for Fermilab support software. A bootable image file is produced containing the Linux kernel, shell and supporting software suite that varies from 3 to 20 megabytes large ' ideal for network booting. The result is a platform that is easier to maintain and deploy in diverse hardware configurations.
poster icon Poster WEPGF096 [1.054 MB]  
WEPGF113 Physics Application Infrastructure Design for FRIB Driver Linac EPICS, controls, linac, ion 1
  • G. Shen, Z.Q. He, M. Ikegami, D. Liu, D.G. Maxwell, V. Vuppala
    FRIB, East Lansing, Michigan, USA
  • E.T. Berryman
    NSCL, East Lansing, Michigan, USA
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
FRIB, which is a new heavy ion accelerator facility to provide intense beams of rare isotopes is currently under construction at Michigan State University. Its driver linac accelerates all stable ions up to uranium, and targets to provides a CW beam with the energy of 200MeV/u and the beam power of 400 kW. The beam commissioning of the driver linac has been planned to start from December 2017. A new infrastructure is under development using service oriented architecture for physics applications, which is a 3-tier structure consisting of upper level, middle layer, and low level respectively. The detailed design and its current status will be presented in this paper.
WEPGF119 Bunch to Bucket Transfer System for FAIR synchrotron, kicker, timing, cavity 1
  • J.N. Bai
    IAP, Frankfurt am Main, Germany
  • R. Bär, D. Beck, O.K. Kester, D. Ondreka, C. Prados, W.W. Terpstra
    GSI, Darmstadt, Germany
  • T. Ferrand
    TEMF, TU Darmstadt, Darmstadt, Germany
  For the FAIR accelerator complex, synchronization of the bunch to bucket (B2B) transfer will be realized by the General Machine Timing system and the Low-Level RF system. Based on these two systems, both synchronization methods, the phase shift and the frequency beating method, are available for the B2B transfer system for FAIR. This system is capable to realize the B2B transfer within 10ms and the precision better than 1 degree for ions over the whole range of stable isotopes. At first, this system will be used for the transfer from the SIS18 to the SIS100. It will then be extended to all transfers at the FAIR accelerator facility. This paper introduces the synchronization methods and concentrates on the standard procedures and the functional blocks of the B2B transfer system.  
poster icon Poster WEPGF119 [1.489 MB]  
THHA2O03 Message Signalled Interrupts in Mixed-Master Control controls, operation, FPGA, network 1
  • W.W. Terpstra, M. Kreider
    GSI, Darmstadt, Germany
  Timing Receivers in the FAIR control system are a complex composition of multiple bus-connected components. The bus is composed of Wishbone crossbars which connect master devices to their controlled slaves. These crossbars are in turn connected in master-slave relationships forming a DAG where source nodes are masters, interior nodes are crossbars, and terminal nodes are slaves. In current designs, masters may be found at multiple levels in the composed bus. Bus masters range from embeddedμcontrollers, to DMA controllers, to bridges from PCIe, VME, USB, or the network. In such a system, delivery of interrupts from controlled slaves to masters is non-trivial. The master may reside multiple levels up the hierarchy. In the case of network control, the master may be kilometres of fibre away. Our approach is to use message signalled interrupts (MSI). This is especially important as a particular slave may be controlled by different masters depending on the use-case. MSI allows the routing of interrupts via the same topology used in master-slave control. This paper explores the benefits, disadvantages, and challenges uncovered by our current implementation.  
slides icon Slides THHA2O03 [0.758 MB]  
THHD3O01 Control Systems for Spallation Target in China Initiative Accelerator Driven System controls, network, neutron, Ethernet 1
  • Z. He, W. Cui, Y. Luo, X. Ting, H.S. Xu, L. Yang, X. Zhang, Q. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  In this paper, we report the design of the control system for the spallation target in China initiative accelerator driven sub-critical (ADS) system, where a heavy-metal target located vertically at the centre of a sub-critical reactor core is bombarded vertically by the high-energy protons from an accelerator. The main functions of the control system for the target are to monitor and control thermal hydraulic, neutron flux, and accelerator-target interface. The first function is to control the components in the primary and secondary loops, such as pumps, heat exchangers, valves, sensors, etc. For the commissioning measurements of the accelerator, the second function is to monitor the neutrons from the spallation target. The three-layer architecture has been used in the control system. In the middle network layer, in order to increase the network reliability, the redundant Ethernet based on Ethernet ring protection protocol has been considered. In the bottom equipment layer, the equipment controls for the above-mentioned functions have been designed. Finally, because the main objective of the target is to integrate the accelerator and the reactor into one system, the integration of accelerator's control system and the reactor's instrumentation and controls into the target's control system has been mentioned.  
slides icon Slides THHD3O01 [0.623 MB]  
FRA3O02 The Laser Magajoule Facility: Control System Status Report controls, laser, diagnostics, interface 1
  • J. Nicoloso
    CEA/DAM/DIF, Arpajon, France
  The Laser MegaJoule (LMJ) is a 176-beam laser facility, located at the CEA CESTA Laboratory near Bordeaux (France). It is designed to deliver about 1.4 MJ of energy to targets, for high energy density physics experiments, including fusion experiments. The commissioning of the first bundle of 8 beams was achieved in October 2014. Commissioning of next bundles is on the way. The paper gives an overview of the general control system architecture, which is designed around the industrial SCADA PANORAMA, supervising about 500 000 control points, using 250 virtual machines on the high level and hundreds of PCs and PLCs on the low level. The focus is on the rules and development guidelines that allowed smooth integration for all the subsystems delivered by a dozen of different contractors. The integration platform and simulation tools designed to integrate the hardware and software outside the LMJ facility are also described. Having such tools provides the ability of integrating the command control subsystems regardless the co-activity issues encountered on the facility itself. That was the key point for success.