
QUASAR - A GENERIC FRAMEWORK FOR RAPID DEVELOPMENT OF

OPC UA SERVERS

P. P. Nikiel, B. Farnham, S. Schlenker, C.-V. Soare, CERN, Geneva, Switzerland

V. Filimonov, PNPI, Gatchina, Russia

D. Abalo Miron, University of Oviedo, Spain

Abstract

This paper describes a new approach for generic design

and efficient development of OPC UA servers. Development

starts with creation of a design file, in XML format, describ-

ing an object-oriented information model of the target system

or device. Using this model, the framework generates an

executable OPC UA server application, which exposes the

per-design OPC UA address space, without the developer

writing a single line of code. Furthermore, the framework

generates skeleton code into which the developer adds the re-

quired target device/system integration logic. This approach

allows both developers unfamiliar with the OPC UA stan-

dard, and advanced OPC UA developers, to create servers

for the systems they are experts in while greatly reducing

design and development effort as compared to developments

based purely on COTS OPC UA toolkits. Higher level soft-

ware may further benefit from the explicit device model by

using the XML design description as the basis for generating

client connectivity configuration and server data representa-

tion. Moreover, having the XML design description at hand

facilitates automatic generation of validation tools. In this

contribution, the concept and implementation of this frame-

work named quasar (acronym for quick OPC UA server

generation framework) is detailed along with examples of

actual production-level usage in the detector control system

of the ATLAS experiment at CERN and beyond.

INTRODUCTION AND MOTIVATION

Distributed control systems require middleware – soft-

ware which transfers data between system components. The

ATLAS Detector Control System (DCS) [1] is an example

of such a distributed control system, organized as a hierar-

chical mesh of heterogeneous components. The middleware

must be capable of handling numerous data models, while

being portable and performant at the same time. For the AT-

LAS DCS, OPC Unified Architecture (further on: UA) [2]

has been selected as its new standard middleware [3] for

device integration mainly due to its object oriented design

and platform independence. A common approach to create

UA servers for the various device types allows to reduce

development and maintenance costs.

Apart from obvious common functionality in which identi-

cal software parts were identified (such as server startup code,

logging implementation etc.), it became evident that develop-

ment efforts could be largely reduced if the data model was

considered a parameter of a generalized UA server. Such

a data model, augmented with additional information, is

subsequently called design. If the format of the design is

sufficiently rich to describe and model (potentially com-

plex) subsystems, big parts of an UA server implementation

may be automatically created (generated). Thereafter, hand-

written custom code is only necessary for providing high

level ‘business logic’ between the generated parts and the

handling of the specific subsystem type (e.g. a hardware ac-

cess library or protocol implementation). Such hand-written

code may be very complex depending on its functionality

requirements. We chose to call this code device logic.

In the following sections we explain the approach of gen-

erating UA servers from the preparation of a server design

up to obtaining a functional application.

QUASAR ARCHITECTURE

Figure 1 gives an overview of the different layers of

quasar put into context. Controllable devices or systems are

accessed using their specific access layer – often provided

together with the specific device. The device logic layer

functions as interface with the high level layers of quasar

which comes in several modules covering different function-

ality aspects. The address space module lies on the UA end

of the server, exposing data towards UA clients, and is imple-

mented using a commercial UA SDK [4]. A configuration

module facilitates address space and device instantiation and

the definition of their relations. XML is used as configura-

tion format backed by XML schema definitions. A XML

schema to C++ mapping generator (here: xsd-cxx) is used

to build actual instances from configuration files. An addi-

tional subsystem called ’calculated items’, operating entirely

in the address space, enables creation of new variables which

are derived from existing ones using mathematical functions.

quasar comes further with optional modules such as com-

ponent based logging, certificate handling, server metadata

and embedded python processing.

MODELLING DEVICES OR SYSTEMS

In the generic approach of quasar, an object oriented

model was chosen for two reasons: object orientation is well

known and widely understood, and UA itself follows the

object orientated paradigm. The purpose of modelling is

to establish a comprehensive device or protocol character-

ization using classes, variables, methods and the relations

between them. Classes are types of particular objects. Vari-

ables belong to classes and are factual vectors of data while

class methods process the associated data. The purpose of

relations is to model aggregations and type hierarchies.

Once the model is prepared, it has to be codified in a com-

mon format – we call this the design file. quasar uses the

Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00WEB3O02

Software Technology Evolution
ISBN 978-3-95450-148-9

1 Co
py

rig
ht

©
20

15
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs
Pr

e-
Pr

es
sR

ele
as

e2
3-

O
ct

-2
01

5
11

:0
0



OPC-UA server toolkit (C++) – Unified Automation

Logging

Security (X509 

certificate 

handling)

XML 

configuration

Server meta-

information

Device logic (custom code)

Device access layer (custom code or vendor provided)

Common 

namespace 

items and 

namespace 

utilities

XML config file

OPC-UA client OPC-UA client OPC-UA client

Device Device

Commercial toolkit

Common quasar 

components

Device specific

q
u
a
sa
r

Embedded 

python

Device

Figure 1: Overview of the quasar components.

XML format for its designs and comes with a ready made

XML Schema allowing for easy design creation with com-

monly available XML editors. A format was required which

parametrizes the generic server such that specific instances

(design files) match particular subsystems/device types. The

most important ingredient of such a design file is the data

model handled by the server (discussed in the previous sec-

tion) augmented with processing-specific attributes.

The first mandatory attribute is capturing the difference

between distinct classifications of variables:

Cache Variable: the factual data resides in RAM. Since

accessing RAM-based data is a primitive operation for com-

puters, get/set/monitor are just trivial operations handled

behind the scenes by the UA toolkit and UA stack.

Source Variable: the factual data resides in undisclosed

location (might not even be RAM-based and for our use

cases it typically was outside given server computer). An

access interface is necessary to read or modify such data,

for which glue logic has to be coded in the server. Moreover

accessing such data may be a very time-consuming process

and often has to be executed in separate thread of execu-

tion. Note that these classifications are not seen from the

perspective of an UA client, all variables are simply queried

(using write/read UA transaction types) or monitored (by

creating a monitored item for this variable). However at the

UA server implementation side it is beneficial to differentiate

between classifications. Another important design attribute

is the handling of concurrence inside the UA server. quasar

provides capabilites to model domains of mutual exclusion

to prevent race conditions in case two objects were to be

accessed at the same time.

Finally, the configuration of objects needs to be specified.

By configuration we understand a set of values that do not

change between creation of an instance and its deletion. The

primary configuration parameter is an unique object name,

allowing e.g. to traverse the hierarchy of objects using dot

as a separator. Additionally, objects often require additional

configuration by assigning values to specific attributes, either

constants or e.g. for initialization purposes. This is also

handled in the design stage through items called “config

entries”. Config entries belong to classes.

In summary – the design represents the description of

types while the configuration is the description of instances.

DESIGN TRANSFORMATION

quasar generates a number of distinct elements based on

the server design:

- source code (mostly C++),

- dependent XML schemas,

- design-dependent parts of the build system,

- visualizations of the object structure,

- UA address configuration for quick integration into

higher level control system layers (e.g. SCADA system),

- additional utilities (e.g. for testing the address space).

Almost all of these tasks are achieved by XSLT transforms,

either to text output (e.g. C++ code) or to XML (e.g. XML

schema). Figure 2 illustrates these transformations.

The full procedure of creating an UA Server using the

framework is as follows:

1. Create or modify the design.

2. Request creation of device logic stubs for classes de-

fined in the design (initially empty stub implementations are

generated, thereafter existing implementations are merged

with respect to the new design).

3. Extend device logic stubs by providing factual imple-

mentation.

4. Build the server (e.g. by using the provided CMake

based build system).

5. Develop by re-iterating the steps 1→ 4.

In the following, the individual transformation steps per-

formed by quasar are detailed:

Generation of Address Space C++ classes: For each

class in the server design, one C++ class is generated, con-

forming to the interface provided by the UA Toolkit (there-

fore instances of these classes can be directly “injected” into

the server address space). For every variable of the class,

appropriate setters, getters and/or write/read handlers are

generated; this ensures that code outside of the Address

Space module (typically, hand-written code in the Device

Logic module) can interface with the address space class

using straightforward C++ function calls.

Information model: UA has rich modelling capabilities

from which smart UA clients may profit. quasar exposes

WEB3O02Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00

ISBN 978-3-95450-148-9
2Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Pr
e-

Pr
es

sR
ele

as
e2

3-
O

ct
-2

01
5

11
:0

0

Software Technology Evolution



Device logic Address space moduleConfiguration module

Configuration.{hxx,cxx}

overwrites

merges

Configuration.xsd

Module build information

Configurator.cpp

Address Space class header

Address Space class body

Source Variables glue logic

Information model

Module build information

Device class header

Device class body

DRoot.{cpp,h}

generated 

on request

generated 

automatically 

on build

Embedded python

Code

XSD

SCADA scripting

SW management

Utilities

Test code

SCADA integration

Visualization (UML, ...)

Code management/versioning

Build system, Packaging

Design file

Figure 2: Transformation diagram illustrating the software generation or modification process for a given design file.

the information model derived from the design both in the

generated code and within the UA address space at server

runtime.

Generation of the configuration XSD schema: Each

class from the design is transformed into a complexType in

an XSD schema while aggregation relations between classes

are respected (e.g. complexType may have a sequence of

elements of a different class). Moreover, config entries spec-

ified in the design which provide configuration data to spe-

cific instances become attributes within the given relevant

complexType.

Generation of the configuration loader: C++ code is

generated to handle parsing a given XML configuration file

to create instances of objects at the startup of the server.

This code builds on top of code generated using xsd-cxx

with Configuration schema as a parameter. Furthermore, an

additional validator is generated to check for constraints that

are not easily explained through Configuration schema but

easy to explain through server’s design.

Device Logic transformation: The Device Logic is the

only quasar-provided module in which the developer is

expected to write C++ source code – the device specific im-

plementation – starting from the generated stubs. The stubs

contain skeleton classes and methods according to the design

along with an interface to the corresponding address space

items. As development progresses, the design may be fluid;

classes may be added or removed; variables may change

type or perhaps are suppressed completely. After a change

of the design file, the developer re-runs the Device Logic

generation. If user-modified class sources exist already, the

hand-written code will not be overwritten – a merge tool

opens to facilitate the adaption of code to the new design.

SCADA integration code transformation: Addition-

ally, quasar may generate tools which let the server be

easily integrated into some SCADA systems. The typical

use case at CERN is as follows: scripts are generated which

allow creating the corresponding data structures and their

UA addresses within the SCADA system (here: Siemens

WinCC OA). This step may not be necessary if a SCADA is

used which provides information model aware UA clients.

ADDITIONAL TOOLS FOR DEVELOPERS

Significant effort has been invested to avoid duplication of

work for quasar users. Thus a number of tools are provided,

helping to carry out the following tasks:

- Visualizing object structures: an UML-like diagram

creator is provided which helps to visualize the design.

- Validating and upgrading design files.

- Managing consistency of source files: a tool is provided

which ensures that source files are properly versioned and

that certain files (e.g. XSLT transformations) are not acci-

dentally modified.

- Building binaries: a build system based on CMake is

provided along with pre-configured toolchains for several

platforms such as x86_64 or ARM-based Linux and Mi-

crosoft Windows.

- Creating installers: a preconfigured spec file for creating

RPM packages.

- Testing the address space: a tool is added which con-

tinuously pushes random data into the address space. This

can be used e.g. to test client mappings and server/client

performance under specific conditions.

EXAMPLES

At the time of writing, quasar had already been used to

create 11 different UA server implementations which cover

numerous use cases, applications and various subsystems

which are interfaced. These servers are currently in pro-

duction use at CERN (in numerous instances). We briefly

discuss two of these servers – the VME crates server and

SNMP server – as their architecture and use case are very dif-

ferent demonstrating the flexibility of the quasar approach.

VME crates server: The VME crates UA server imple-

ments full monitoring and control of specific VME crates

using a proprietary, polling-based communication proto-

col [5] via CAN bus interfaced to a COTS rack server of the

control system. The object model of the design is defined

by CAN buses formed by a chain of VME crates which in

turn contain channels, fans and temperature probes, c.f. the

quasar-generated class hierarchy diagram (Fig. 3). Each

of these elements (buses, crates, etc.) is to be hierarchi-

cally declared in the configuration file allowing a variety of

configurations, from very simple single-crate systems up to

multi-bus, multi-crate systems with thousands of channels.

From the hardware point of view, each crate has a com-

munication module which has to be polled for the status of

the crate itself and its channels and sensors. From the de-

vice logic point of view, a software entity at the server side,

called communication controller, manages communication

between factual crates and the device logic of the UA server.

Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00WEB3O02

Software Technology Evolution
ISBN 978-3-95450-148-9

3 Co
py

rig
ht

©
20

15
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs
Pr

e-
Pr

es
sR

ele
as

e2
3-

O
ct

-2
01

5
11

:0
0



CanBus

speed : UaString

port : UaString

type : UaString

listenOnly : OpcUa_Boolean

controlEnabled : OpcUa_Boolean

Crate

: OpcUa_UInt32

: OpcUa_UInt32

: OpcUa_UInt32

: OpcUa_Double

: OpcUa_Double

: OpcUa_Boolean 
: OpcUa_Boolean

: OpcUa_UInt32

: OpcUa_UInt32

: UaString

queryPeriod 
currentFlags 
underVoltFlags 
overVoltFlags 
overVoltageProtFlags 
powerOn 
onOffCrate 
crateStatus 
vmeSysReset 
idStringPs 
operatingTimePs : OpcUa_Float

refreshNonMonitoredItems : OpcUa_Int32

id : OpcUa_UInt32

0..*

Channel

currentLimitSetPoint : OpcUa_Float

currentValue : OpcUa_Float

minCurrentCompSetPoint : OpcUa_Float

overCurrentCompSetPoint : OpcUa_Double

overVoltCompSetPoint : OpcUa_Float

overVoltProtection : OpcUa_Float

underVoltCompSetPoint : OpcUa_Float

voltageSetPoint : OpcUa_Float

voltageValue : OpcUa_Float

id : OpcUa_UInt32

0..*

FanModule

changeFansSpeed : OpcUa_UInt32

fansOK : OpcUa_Boolean

tripFansBrokenEnabled : OpcUa_Boolean

idStringFan : UaString

middleSpeed : OpcUa_UInt32

nominalSpeed : OpcUa_UInt32

operatingTimeFan : OpcUa_Float

softwareVersionFan : UaString

1

TemperatureModule

extTempErrorFlags : OpcUa_UInt32

tempErrorFlags : OpcUa_UInt32

1

Fan

speed : OpcUa_UInt32

id : OpcUa_UInt32

0..*
TemperatureProbe

tempLimit : OpcUa_Float

tempValue : OpcUa_Float

tempWarning : OpcUa_Float

id : OpcUa_UInt32

0..*

ROOT

0..*

Figure 3: Generated design diagram of the VME server.

Agent

CE address : UaString

CE community : UaString

Folder

0..*

DataItem

CV monitor : UaVariant

CV oid : UaString

SV set : UaVariant

SV get : UaVariant

CE type : UaString

0..*0..*

0..*

ROOT

0..*

Figure 4: Generated design diagram of the SNMP server.

Even though the crate communication protocol is polling

based, the software of the device logic is event based and

as soon as new data arrives from a crate, it is pushed into

variables of the UA address space and then further to any

subscribed UA client – in UA terms "monitored data". The

server uses a “CAN interface” module – an optional quasar

module – a hardware access library supporting CAN inter-

faces from numerous vendors. A second, server-specific

module implements the specific VME crate communication

protocol facilitating encapsulation of data in the server de-

vice logic. The VME crates server proved to work stably

in production and is used in a wide span of configurations –

the biggest being a system of 62 VME crates of the ATLAS

trigger and data acquisition system with ∼5000 channels

for which the server CPU load and memory consumption is

negligible on a modern server computer.

SNMP UA server: The SNMP (Simple Network Manage-

ment Protocol) is an Internet-standard protocol for managing

devices on IP networks. The server exposes a tree-shaped

address space in which data items are basic building blocks

(leaves of the tree). Figure 4 shows the design of the server:

each data item is bound to one SNMP object identifier in

the configuration. Each read/write request coming from an

UA client is transformed into a get/set SNMP operation.

Compared to the previous example where cached data

coming from the hardware is pushed into memory, this server

makes extensive use of Source Variables, which assumes that

only the data provider (here: SNMP agent) has the most up-

to-date contents of variables. Since a SNMP transaction is a

blocking operation (which, compared to in-memory access,

may fail), appropriate processing has to be estabilished in or-

der to avoid blocking the whole server while transactions are

ongoing. quasar automatically generates the corresponding

code: each SNMP transaction is spawning a job belonging

to a thread pool and synchronization might be automatically

applied depending on the synchronization attributes of each

hierarchy level in the design file.

CONCLUSIONS

quasar has been already successfully used for the cre-

ation of a number of UA servers by non-expert developers

which demonstrates its advantages: versatility and efficiency

of development. The former has been proven by a vast span

of applications, from custom devices to generic designs for

well-known protocols. The efficiency of the development

process becomes evident by the reduction of development

efforts since up to 90% of source code can be generated

which results in a lower chance of bugs being introduced

and at the same time achieving better source code managa-

bility. quasar doesn’t add any overhead compared to classic

server development using an UA toolkit only and thus no

performance penalty is expected nor observed. Further ex-

ploitation of quasar at CERN and beyond is envisaged

while its functionality being further expanded.

REFERENCES

[1] Barriuso Poy A, Boterenbrood H, Burckhart H J, Cook J, Fil-

imonov V, Franz S, Gutzwiller O, Hallgren B, Khomutnikov

V, Schlenker S and Varela F “The detector control system of

the ATLAS experiment”, Journal of Instrumentation, Vol. 3,

May 2008, doi:10.1088/1748-0221/3/05/P05006.

[2] The OPC Foundation, “OPC Unified Architecture”,

http://opcfoundation.org/opc-ua/

[3] Nikiel P P, Farnham B, Franz S, Schlenker S, Boterenbrood

H and Filimonov V “OPC Unified Architecture within the

Control System of the ATLAS Experiment”, Proceedings of

ICALEPCS2013, San Francisco, CA, USA, p 113-6.

[4] Unified Automation GmbH, “C++ based UA Server SDK”.

[5] W-IE-NE-R Plein & Baus GmbH, “CAN-BUS Interface for

W-Ie-Ne-R Crate Remote Control”.

WEB3O02Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00

ISBN 978-3-95450-148-9
4Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Pr
e-

Pr
es

sR
ele

as
e2

3-
O

ct
-2

01
5

11
:0

0

Software Technology Evolution


