
ADVANCED MATLAB GUI DEVELOPMENT WITH THE DATAGUI

LIBRARY

Sascha Meykopff, DESY, Hamburg, Germany

Abstract

On the DESY campus Matlab is a widely used tool for

creating complex user interfaces. Although the on-board

GUI tools are easy to use and provide quick results, the

generated low-level code lacks uniformity and advanced

features like automatic verification and conversion of

input and output data. These limitations are overcome by

the newly developed DataGUI library. The library is

based on the model-view-controller software pattern and

supports enhanced data handling, undocumented Matlab

GUI elements, and configurable resizing of the user

interface. An outlook on features of the upcoming release

is also presented.

INTRODUCTION

At the European XFEL and the FLASH facility, both

located on the DESY campus, most of the operation

handling is based on the client-server model with JDDD

as the front-end client and DOOCS servers as the back

end software [1]. If an operation task needs a more

complex graphical user interface (GUI) it's recommended

to use Matlab. The GUIDE tool is an interactive method

to create a GUI with Matlab. The use of GUIDE provides

quick results but extensive code work is necessary to

handle the interaction between the GUI elements and the

program logic. The effort to implement a GUI complete

programmatically without the help of GUIDE is small.

The DataGUI library was developed to reduce the coding

amount, and to improve the stability of Matlab

applications.

ACCESS AND VERIFY PROPERTIES

Matlab GUI elements are designed as objects. The GUI

element behavior is defined by object properties. To

access element properties the developer has to call a get

or set function. Starting with Matlab version R2014b one

can use the dot notation to query or set properties [2]. The

property names and type format depend on the GUI

element type and Matlab version. To write an application

which works on different Matlab releases these

circumstances must be considered.

Figure 1: How to verify and convert text field input in a

Matlab callback function.

 In a good software design every input variable should

be verified. To neglect parameter verification results in

unstable software. Currently a Matlab developer is not

encouraged to verify the GUI input. Figure 1 shows an

example how to verify and convert an edit text field for

integer input. This code has to be implemented for every

input element.

SHARE DATA AMONG CALLBACKS

The interaction between GUI elements and user code is

done by callback functions. If one clicks on a GUI button,

Matlab calls an assigned function. Most of the Matlab

callbacks carry two input and no output parameters. The

first parameter is the handle of the triggered GUI element.

The second parameter is defined as 'eventdata' without

any value. The developer can add additional input

parameters. No return parameters are defined in Matlab

callbacks. If the code needs to share data among callbacks

the function parameters are not suitable. The Matlab

documentation describes four different solutions [3].

These solutions have in common to use a function to get

and store the shared data. These functions needs to be

called at the start and the end of every callback. This

design causes a lot of code duplication and potential

errors. A lot of real world software use global variables to

store data among callbacks. This is one of the worst

solutions because global variables yields in a bad code

design.

MODEL-VIEW-CONTROLLER

The Model-view-controller (MVC) is a software pattern

which is followed by the most modern GUI toolkits. The

pattern is an abstract idea of separating the code into three

parts. One part describes and handles the data model of an

application. The second one creates the view of the data

model. Multiple views of the same data model are

allowed for example to view a data table and a plot. The

last part covers the program logic. This part updates the

data model and modifies the different views. The MVC

pattern gives a rough software structure and helps the

developer to create a good software design. The software

design usually suffers because developing a Matlab GUI

is time-consuming. The DataGUI library guides the

developer to separate his code which results in a better

design.

GLOBAL DATA DESCRIPTION

Matlab software who uses the DataGUI library has

unified callbacks. Every callback has a 'data' variable as

input and output. The type of the 'data' variable is a

structure. One can add, remove, and store fields inside the

structure. The storage among callbacks is handled by the

Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00WEPGF142

User Interfaces and Tools
ISBN 978-3-95450-148-9

1 Co
py

rig
ht

©
20

15
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs
Pr

e-
Pr

es
sR

ele
as

e2
3-

O
ct

-2
01

5
11

:0
0

DataGUI library. The library defines special fields in the

data structure called 'registered variables'. These

registered variables have additional properties. The

library stores the type of the variable. An automatic data

conversion ensures the variable type if this variable is

modified by a GUI input element. Additionally the library

supports constraints. For example a numeric variable has

a minimal and a maximal value. The constraints is

checked if an input element changes the registered

variable. If the input value violates the constraints no

modification of the data structure is happen and the

invalid input element is marked red. There is no invalid

data values in the registered variables. Another additional

parameter of a registered variable is a callback definition.

If a GUI element has modified a registered variable this

function is called. In DataGUI code the callbacks are

bind to registered variables not to GUI elements. If

different GUI elements modifies the same registered

variable the same callback is executed. Figure 2 shows an

example for a variable definitions. The definition of the

registered variables conform to the view part of the MVC

pattern.

Figure 2: Example code of data definition. Registered

variable 'input_string' with value 'Test string'. Variable

'input_num' as numeric input in the range from 0 to 10

and a callback definition 'new_num'. The addData

function creates uses the cell array as input and creates

all variables.

GUI ELEMENT DEFINITION

The DataGUI library handles the creation of new GUI

elements. A new GUI element is defined by the type

string of the new element, the new tag name, and the

parent tag name. Depending on the type of the new

element some parameters are necessary. For example a

new label element needs a string as parameter. This string

defines the displayed output. If this parameter value is the

name of a registered variable the behavior is different.

The output of this GUI element is now linked to the

registered variable and the element displays it's current

value. If the value of the variable is modified inside

callback function the GUI element will be changed direct

after the callback is finished. If the new GUI element is an

edit field the mandatory parameter should be linked to a

registered variable. If a user changes the value of the edit

field the library read the current value of the GUI

element. In the next step the value is converted to

expected type format and the constraints is verified. If this

verification is successful the new value is stored in the

registered variable and the associated callback function is

executed. The developer modifies GUI elements by

assigning new values to the registered variables. No

exception handling because of invalid input parameter is

necessary. This will decrease the code size and improves

the software quality. In most cases the proper definition of

new GUI elements require more parameters. Additional

parameters can be defined by property/value pairs. For

example the 'visible' property of a GUI element can be set

to the value 'off'. But this value also can be the name of a

registered variable. In this case the property status

depends on the value of the registered variable. A

developer can change the visibility status by writing 'on'

or 'off' into the linked variable. A small example about the

GUI element definition with DataGUI is shown in Figure

3 and the resulting GUI in Figure 4.

Figure 3: Defining a GUI with 4 elements. 'Name' and

'visible' are additional parameters.

Figure 4: Example GUI with code of Figures 2,3,6.

ADDITIONAL FEATURES OF DATAGUI

The DataGUI library supports all standard Matlab GUI

elements. Additionally support for undocumented GUI

elements is implemented.

Figure 5: Example of advanced event support. The upper

plot can be scale by mouse drag and drop.

WEPGF142Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00

ISBN 978-3-95450-148-9
2Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Pr
e-

Pr
es

sR
ele

as
e2

3-
O

ct
-2

01
5

11
:0

0

User Interfaces and Tools

This covers tabulator support for older Matlab versions

with a consistent interface. Tree elements with a

convenient data interface are included. Dynamic trees

obtain their data by a callback function. Also timers are

handled by the library. Matlab timers are difficult to

handle. The callback function of a timer is able to

interrupt a GUI callback. If the timer interacts with the

GUI or other data this behavior result in unstable

conditions. The timer of the DataGUI library will not run

a callback if another callback is executed. A special timer

is implemented which repeatedly executes a callback

function while a defined condition is true. For example

this could be used to emulate multi-threading

functionality. A unified callback interface for

undocumented callbacks supports the developer to

implement a drag and drop interface or to catch other

advanced mouse events. An application which uses mouse

events to implement a drag and drop control of a plot is

shown in Figure 5.

RESIZING OF A MATLAB GUI

The Matlab GUI supports the resizing of elements. A

GUI created by GUIDE resizes every element relative to

the figure size or not at all. On modern computer systems

with huge visible monitor sizes this behavior is

unsuitable. For example axes should be resized in a

different way than edit fields. To handle the resize of a

figure a developer has to set the 'ResizeFcn' or in newer

Matlab versions the 'SizeChangedFcn' property. Inside the

referred callback function the developer has to calculate

and set the complete layout of all visible elements. The

DataGUI library shorten this work.

Figure 6: Example layout definition.

The layout of a GUI is defined by a nested cell array.

Each cell describes a horizontal or vertical layout. The

cell contains pairs of targets and size definitions. The

target is the tag names of GUI element or another nested

cell array. The size definition is the size in pixels, a

fraction, or the remaining space of the layout. It's possible

to use registered variables as a size parameter. This allows

the developer to change the layout dynamically. An

example layout definition is in Figure 6. Figures 7,8 show

a more complex example for a nested structure.

Figure 7: Nested cell array example.

OUTLOOK

While the development of control room applications we

improved the library a lot (see Figure 9). But some topics

have to be done.

Figure 8: Result of code shown in Figure 7.

 One topic is a new object oriented design of the layout

to improve the legibility of the code. With the release

2014b of Matlab some fundamental changes happened.

This results in a different timing behavior of the

applications and the support for special mouse events

must be revised. In discussions with different developers

a general object oriented approach of the DataGUI library

can be considered.

Figure 9: The new emittance measurement and match tool
uses the DataGUI library.

CONCLUSION

The DataGUI library enables to build full featured

graphical user interfaces with Matlab. The design of the

API separates data handing and GUI element handling

which will result in a much cleaner code structure. To

reduce code duplications and to improve code stability the

library takes care about converting parameters and

observes constraints. The library supports a wide array of

modern GUI elements. The different Matlab API over a

long range of Matlab releases is considerd. The DataGUI

library supports extensive possibilities to resize the

layout. As demonstrated in the DESY control-room the

library offers powerful, stable, and easy to handle Matlab

software suitable for the daily use by the machine

operators.

Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00WEPGF142

User Interfaces and Tools
ISBN 978-3-95450-148-9

3 Co
py

rig
ht

©
20

15
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs
Pr

e-
Pr

es
sR

ele
as

e2
3-

O
ct

-2
01

5
11

:0
0

REFERENCES

[1] R. Bacher et al., “The large scale European XFEL

control system: Overview and status of the

commissioning”, MOA3O02, Proc. ICALEPCS’15,

Melbourne, Australia (2015),

[2] Matlab release notes over a range of versions:

https://de.mathworks.com/help/matlab/release-

notes.html/.

[3] Matlab manual (share data among callbacks):

https://de.mathworks.com/help/matlab/creating_guis/

share-data-among-callbacks.html/.

WEPGF142Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00

ISBN 978-3-95450-148-9
4Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Pr
e-

Pr
es

sR
ele

as
e2

3-
O

ct
-2

01
5

11
:0

0

User Interfaces and Tools

