Device Control Database Tool (DCDB)

Pavel Maslov (oPAC fellow at Cosylab, Ljubljana, Slovenia)
Miroslav Pavleski, Matej Komel, Klemen Žagar (Cosylab)

Abstract

In a physics facility containing numerous instruments, it is advantageous to reduce the amount of effort and repetitive work needed for changing the control system (CS) configuration: adding new devices, moving instruments from beamline to beamline, and more.

We have developed a CS configuration tool, which provides an easy-to-use interface for quick configuration of the entire facility. It uses Excel as the front-end application and allows the user to quickly generate and deploy IOC configuration (EPICS start-up scripts, alarms and archive configuration) onto IOCs, start, stop, restart IOCs, alarm servers and archive engines, and more.

The DCDB tool utilizes a relational database, which stores information about all the elements of the accelerator. The communication between the client, database and IOCs is realized by a REST server written in Python. The key feature of the DCDB tool is that the user does not need to recompile the source code. It is achieved by using a dynamic library loader, which automatically loads and links device support libraries.

The DCDB tool is compliant with CODAC (used ITER, ELI-NP), but can also be used in any other EPICS environment (i.e. ESS).

DCDB architecture

Server side

- REST server written in Python
- Uses JSON as the data exchange format
- Uses SSH to deploy configuration onto IOCs
- Deployed as CODAC-service:

  ```
  Usage: dcdb {start|stop|status|restart|fg|log} [--port=5000]
  ```
- Tested on Windows/Linux/Mac OS X

Client side

- Microsoft Excel

Features

- Python back-end (flask-restful, sqlalchemy, paramiko)
- IOC/Alarms/Archive configuration
- Generation and deployment of st.cmd scripts
- Start/stop/restart IOCs
- Restart alarm/archive servers
- Change IOC parameters (PV macros) on the fly
- Utilizes dlloader (by Dirk Zimoch, PSI)
- S7 PLC support
- StreamDevice support
- Google Spreadsheets client
- Compliant with CODAC v4 (ESS, ITER, ELI-NP)
- Chinese localisation

Acknowledgement

oPAC - optimisation of Particle Accelerators. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 284865.