Introduction

The CERN's converter control libraries are a collection of libraries written in C, available under the GNU Lesser General Public License from https://github.com/cclibs.

CCLIBS currently includes four libraries and two more will be added in 2016. Together they provide a rich set of features for the regulation of power converters in accelerators:

- **libreg**: Current, field, and voltage regulation
- **libref**: Reference manager
- **libsig**: Function generation
- **liblog**: Analog and digital signal logging (planned for 2016)

The function generation and regulation libraries, libref and libreg, were already presented in a paper and poster at ICALEPCS 2011 (WP05/ND05).

Both libreg and liblog have been significantly improved in CCLIBS v2.

CCLIBS v1 at ICALPCS'11

This poster focuses on the reference manager library, libref, which is new in CCLIBS v2.

- A function can be armed in the IDLE state, resulting in the state changing to ARMED.
- The new function must start from the initial reference.
- The armed function is started with a time event and the state changes to RUNNING.
- The function is disarmed automatically on completion, and the state machine returns to IDLE.
- The function can be aborted before the end by returning to the IDLE state.

Polarity Switch Manager

Libref allows a low-cost unipolar converter to be used with a polarity switch to drive a bipolar circuit. The polarity can be set manually, or can be controlled automatically when in the DIRECT or CYCLING states, based on the polarity of the reference function.

Reference Manager State Machine

Example of the CERN-designed 700A 1-channel self-protecting polarity switch.

Cycling Reference Functions

The CYCLING state is used for fast cycling accelerators. Reference functions are armed in advance. The real-time selection of functions is made by the timing system.

- The function can be suspended and resumed with timing events. It will wait in the PAUSED state.
- The CYCLING state can automatically perform a magnetic pre-cycle to improve magnetic reproducibility between cycles.
- An "economy" cycle with reduced RMS run if no beam is injected, without affecting the next cycle magnetically.
- If a polarity switch is in use, it can switch automatically as required.

DIRECT Reference

A reference function is needed that can:

- Ramp smoothly from one reference value to another
- Work even if the voltage reference is being clipped
- Provide the RAMP function in libreg. It is a special parabolic + parabolic function, which can accumulate a time offset if the reference is being limited.

Polycycle

The RAMP function

If the reference from the previous iteration was clipped, the time offset is adjusted so that the clipped reference would have been generated.

Smooth start/stop of 2-Q converter using RAMP and open-loop reference

- Error in load model: 30%
- Open-loop reference
- Closed-loop threshold
- Closed-loop reference
- Open-loop to closed-loop

Road map for CCLIBS

- CCLIBS v1 at ICALPCS'11
- CCLIBS v2
- CCLIBS is built on 15 years of experience with controlling power converters

Single-use Reference Functions

The IDLE, ARMED and Running states are used by the CERN LHC converter controllers to run functions synchronously on demand.

- A function can be armed in the IDLE state, resulting in the state changing to ARMED.
- The new function must start from the initial reference.
- The armed function is started with a time event and the state changes to RUNNING.
- The function is disarmed automatically on completion and the state machine returns to IDLE.
- The function can be aborted before the end by returning to IDLE state.

Libreg implements an internally stable closed-loop RST regulator, which connects the three regulation variables:

- Voltage
- Current
- Field

The RST realizes a (pseudo) dead-beat control and allows up to 2.4 period of delay. Libreg also implements an open-loop model for an inductive load, which connects the open-loop reference with the actuation:

- Open-loop reference
- Closed-loop reference
- Open-loop to closed-loop

Both open-loop and closed-loop algorithms work in either direction, or when running in open-loop, the closed-loop reference is being calculated, and vice versa. When combined with the RAMP function, this allows smooth transitions from open-loop to closed-loop when starting and stopping.