SHOT RATE IMPROVEMENT STRIVE FOR THE
NATIONAL IGNITION FACILITY (NIF)

MOD3003

15th International Conference on Accelerator & Large Experimental Physics Control Systems (ICALEPCS)
October 18-23, 2015

Gordon Brunton
NIF Control Systems Lead
With NIF fully operational as a user facility focus now shifted to maximizing return of experimental data

- **Shot Rate Goals:**
  - FY15: 300 shots (>50% increase over FY14)
  - FY16: 400 shots

- **Primary Focus Areas:**
  - More shot time
  - Improved experiment scheduling
  - Reducing shot to shot durations

With changes already implemented to formalize 24/5 shot time and improved experiment scheduling focus shifted to reducing shot cycle durations
The NIF Control System is one of the world’s largest operational scientific control systems

- Large scale
  - 66,000 device control points
  - >1M I/O channels

- Highly data-driven
  - Device configuration
  - Experiment definitions, model & results

- Highly distributed
  - 35 Framework & Supervisory servers
  - 3 compute clusters (110 nodes)
  - 950 Front-End Processors
  - 900 embedded controllers
  - 2,400 processes

- Highly automated
  - 1.6M sequenced control point operations per shot cycle
  - 24x7 operation

A large scale systems analysis and engineering effort was performed to identify where to best invest in controls enhancements to increase the NIF shot rate
Several analysis approaches were used to identify the largest savings

- Years of shot cycle metrics analyzed to determine ‘normal’ critical paths
  - Shot cycles categorized by configuration complexity (i.e. warm simple, warm complex, cold and layered) due to high variance in execution times

- Shot cycle sequences analyzed to identify if ordering changes could reduce critical path durations (top down)

- Long duration shot cycle sequences analyzed in depth for optimization and/or elimination (bottom up)
  - Analysis considered both critical path and ‘close to’ critical path activities to ensure true return of investment was measured

- Improvement activities were prioritized based on assessed time savings and implementation effort

The following summarizes some of the key improvements chosen and results achieved
Performing alignment & energetics calibration in parallel with target area operations reduced shot cycle by 1 hour

New Parallel Shot Cycles

- Amplitude modulation verification post experiment wavelength change
  - Operational cost* = 120 * 2hrs per year

- Precision pulse shape calibration for high precision experiments
  - Operational cost* = 150 * 3hrs per year

Utilizing new ‘slack’ time significantly reduced the number of independent calibration and verification shot cycles previously required

* Estimates based on historical shot metrics extrapolated forward to nominal goal rate of 400 shots per year
Target alignment process analyzed to automate some operations and minimize operator interactions

- Target Alignment Assistant Tool (TAAT) was developed to provide graphical scripted interface to guide operator through fine alignment process for NIF positioners

- Semi-automates manual alignment approach by removing opportunities for user input error
  - Data driven approach to allow ease of adaptability to novel target types

- Shot cycle savings of 30-60 minutes obtained

### Operational savings using TAAT

<table>
<thead>
<tr>
<th></th>
<th>Manual Alignment Procedure</th>
<th>TAAT</th>
</tr>
</thead>
<tbody>
<tr>
<td># Measurements</td>
<td>1413</td>
<td>763</td>
</tr>
<tr>
<td># Moves</td>
<td>130</td>
<td>34</td>
</tr>
<tr>
<td># Data Entries</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td># Move Choices</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Total Savings (%)</td>
<td>46%</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Use of TAAT for target alignment has significantly reduced the duration & variance of alignment times and is now under evaluation for diagnostic alignments
Target chamber positioner movement rules of engagement re-evaluated to reduce bottlenecks

- All target chamber positioner movements previously required 2 operators, for safety, which has caused delays due to staff availability and distraction.
- New rules of engagement relax requirement to 1 operator for 90% of moves without compromising safety.

Alignment duration variances have significantly reduced with new rules without compromising safety while allowing greater operational flexibility.
New ‘Gatling’ experiment type facilitates back-to-back target shots in the same shot cycle

- Avoids unnecessary laser preparation if shot configurations are similar
- Only target exchanges and diagnostic reconfigurations between shots
  - Can utilize interleaved positioners for further savings

The first series of ‘Gatling’ experiments are scheduled to be performed on NIF this fall and have the potential to significantly contribute to further shot rate improvements
Sequencing of optics inspection (FODI) analyzed and optimized to minimize shot to shot turnaround

With limited archiving in this area, optimization analysis made significant use of Splunk™ log parsing ability to identify optimization strategies and evaluate return on investment

### FODI Steps w/ Proposed Optimizations

<table>
<thead>
<tr>
<th>Present FODI acquisition</th>
<th>Duration per beamline (seconds)</th>
<th>Savings per beamline (seconds)</th>
<th>Duration (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser OFF</td>
<td>65</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Laser Switch to Beamline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focus Motor to Position (Brake Off &amp; Brake On)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser On</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capture and Archive Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Capture Complete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Overall savings</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser OFF</td>
<td>38</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>Laser Switch to Beamline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focus Motor to Position (Deferred Braking)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser On</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capture and Archive Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Capture Complete</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Optimization Results

**FODI Inspections performed 2-4 times per week between shots**

- **Savings = ~110 Hrs per year**

**ICALEPCS 2015 - MOD3003**
To assist with measuring efficiency improvements a critical path analysis tool (CPAT) has been developed.

Critical Path Analysis Tool (CPAT)

- Analyzes historical shot cycle metrics
- Visualizes critical path of shot cycle(s)
- Provides metrics on shot execution including long operations, averages and standard deviation
- Rapidly identifies ‘slack’ time on non-critical path blocks

CPAT already used to identify 5 minute saving from sub-optimal rod shot sequencing.

NIF performs ~1300 rod shots per year (108 operational hours). These savings equate to ~11 additional shots per year.
The results of the shot cycle schedule and controls enhancements have resulted in significant improvements.

The shot rate process improvements resulted in meeting the FY15 300 shot rate goal >1 month earlier than planned.

FY15 Target Shots:
- FY15 goal of 300 shots met 8/14/15

FY15 Weekly Shot Rate:
- ~80% increase over FY14
Future Work

- **Advanced Tracking Laser Alignment System (ATLAS)**
  - Laser Tracker based diagnostic package alignment
  - Replaces need for opposed port imaging systems
  - Decouples diagnostic alignment from use of Target Alignment System (TAS) thus removing diagnostic alignments from the shot cycle critical path

- **Target And Diagnostic Manipulators (TANDM)**
  - Addition of 2 new target/diagnostic positioners
  - Allows additional diagnostics and allows Cryo positioner to be layering without impacting shot schedule
  - Requires ATLAS as no opposing port alignment system (OPAS) being implemented for alignment
Summary

- Historical metrics were critical to process improvement
  - Invaluable in accurately analyzing optimization approaches and measuring success

- Both top down and bottoms up analysis approach identified improvements
  - Top down typically yielded the most gains (i.e. big picture)

- Return on investment important to accurately capture
  - Aids in defining need for change and prioritizing order of deployment

- Reliability, Availability & Maintainability (RAM) also important to analyze
  - With parallel execution the slowest cog governs speed of overall system

- System optimizations often best left until system is completed
  - However imposed system constraints should be considered throughout design to ensure optimization potentials are not being inhibited

NIF shot rate has made significant gains during FY15 and optimizations implemented have positioned us well for meeting FY16 goals and beyond.