

Managing Neutron Beam Scans at the Canadian Neutron Beam Centre

Mark Vigder

2015 Oct. 18

Canadian Neutron Beam Centre

NRU: Canada's multipurpose research reactor

Six beam lines:

- Powder Diffractometer
- Polarized Beam
- Triple-Axis Spectrometers
- Reflectometer
- Stress-Scanning Diffractometer

Ancillary equipment:

- Cryostats
- Furnaces
- Monochromaters
- Filters
- etc.

http://www.cnl.ca/en/home/facilities-and-expertise/nru/default.aspx

Experiment Control

Sample space involves many independent variables:

- location, duration, magnetic fields, temperature, stress, background measurements, sample changes, beam focus, energy levels
- An experiment may involve scanning at thousands of points within the sample space.

During the experiment, scientists:

- Specify the points in sample space
- Sequence the points
- Run sequences of points
- Modify and rerun the sequences
- Organize the data into data sets for analysis

Experiment Control

Issues to address:

- Minimize the paradigm shift
 - There's 30 years of experience in the current system
- Identical software on all beam lines
 - Differences between beam lines addressed through configuration mechanisms
- Low learning curve for the basic functionality
 - Many visiting scientists come for days/weeks
 - Must be able to work independently

Managing the scans...

- Formalize the concept of 'scan' using a basic algebra:
 - Scans defined in terms of set theory
 - Set of operators for building scans (sequence, dot product, multiply, interleave, ...
 - e.g.,

```
step(Q,...) | bg(...)
((step(PHI,...) ^ m_flip('up', 'down') ^ d_flip('up'))) * step(TEMP,...)
```

- Repository:
 - templates of commonly used scan types (stepping, background, texture, polarized scans...)
 - User defined templates

Managing the scans

- User database
 - One per experiment
 - Each record defines a scan
 - Records are constructed by instantiating templates and combining using scan algebra
- Execution sequence
 - Expression to select and sequence records from the scan database
 - Basic operators for sequencing, repeating, e.g.:
 - (5-30), 99*10, (50-40)
 - Organize the acquired data for analysis

Managing the scans

Scan template repository

- Templates of scanning techniques
- Common + user defined
- Relatively stable

Scan database

- One db per experiment
- Instantiate and combine templates
- Frequently modified, even during experiment

Scan Sequence

- Expression to select and sequence records from the database
- Organize acquired data

Implementation

- EPICS Based control system
- Identical system deployed on all beam lines
- Scan algebra implemented in the Python language:
 - Python operators redefined as scan algebra operators
- Repository:
 - Templates are parameterized Python functions
 - Users can build their own templates
- Database
 - Usually quite simple, spreadsheet suffices
 - Ability to add Python scripting
- GUI for selecting and sequencing records from the database

•Thanks to:

• Lee Cusick, Dave Dean, Ron Donaberger, Tim Whan

Questions?

• ... and answers!