Managing Neutron Beam Scans at the Canadian Neutron Beam Centre

Mark Vigder
2015 Oct. 18
Canadian Neutron Beam Centre

Six beam lines:
- Powder Diffractometer
- Polarized Beam
- Triple-Axis Spectrometers
- Reflectometer
- Stress-Scanning Diffractometer

Ancillary equipment:
- Cryostats
- Furnaces
- Monochromaters
- Filters
- etc.

NRU: Canada’s multipurpose research reactor

Experiment Control

Sample space involves many independent variables:
• location, duration, magnetic fields, temperature, stress, background measurements, sample changes, beam focus, energy levels ...
• An experiment may involve scanning at thousands of points within the sample space.

During the experiment, scientists:
• Specify the points in sample space
• Sequence the points
• Run sequences of points
• Modify and rerun the sequences
• Organize the data into data sets for analysis
Experiment Control

Issues to address:

• Minimize the paradigm shift
 • There’s 30 years of experience in the current system
• Identical software on all beam lines
 • Differences between beam lines addressed through configuration mechanisms
• Low learning curve for the basic functionality
 • Many visiting scientists come for days/weeks
 • Must be able to work independently
Managing the scans...

• Formalize the concept of 'scan' using a basic algebra:
 • Scans defined in terms of set theory
 • Set of operators for building scans (sequence, dot product, multiply, interleave, ...)
 • e.g.,
 • step(Q,...) | bg(...)
 • ((step(PHI,...) ^ m_flip('up', 'down') ^ d_flip('up'))) * step(TEMP,...)

• Repository:
 • templates of commonly used scan types (stepping, background, texture, polarized scans...)
 • User defined templates
Managing the scans

• User database
 • One per experiment
 • Each record defines a scan
 • Records are constructed by instantiating templates and combining using scan algebra

• Execution sequence
 • Expression to select and sequence records from the scan database
 • Basic operators for sequencing, repeating, e.g.:
 • (5-30), 99*10, (50-40)
 • Organize the acquired data for analysis
Managing the scans

Scan template repository
- Templates of scanning techniques
- Common + user defined
- Relatively stable

Scan database
- One db per experiment
- Instantiate and combine templates
- Frequently modified, even during experiment

Scan Sequence
- Expression to select and sequence records from the database
- Organize acquired data
Implementation

• EPICS Based control system
• Identical system deployed on all beam lines
• Scan algebra implemented in the Python language:
 • Python operators redefined as scan algebra operators
• Repository:
 • Templates are parameterized Python functions
 • Users can build their own templates
• Database
 • Usually quite simple, spreadsheet suffices
 • Ability to add Python scripting
• GUI for selecting and sequencing records from the database
•Thanks to:
 •Lee Cusick, Dave Dean, Ron Donabarger, Tim Whan

•Questions?
 •... and answers!