ON-THE-FLY SCANS FOR FAST TOMOGRAPHY AT LNLS IMAGING BEAMLINE

Gabriel B. Z. L. Moreno
X-Ray Imaging Beamline Group, LNLS

Experiment Control, ICALEPCS 2015
Sirius Construction Site (July’15)

LNLS (UVX) Building
Sirius Construction Site (July’15)

LNLS (UVX) Building

2nd Gen (Since 1997)
- Future Experiments at Sirius’s Imaging Beamline (Mogno)
- Today’s LNLS Standards
- Fast Experiment Sequence
- Data Acquisition Architecture
 - Overview
 - CS-Studio Interface
 - Scan Sequencer (Hyppie Module)
 - Galil DMC4183 Implementation
 - Network Considerations for Camera Control PC
- Demo Test and Results
 - Conventional vs HW Point-to-Point
 - Conventional vs Fly-Scan
- Conclusions
Future Experiments at Sirius

- **Mogno (Micro and Nano Tomography Beamline)**
 - Beam flux 2 to 3 orders of magnitude higher than IMX
 - Higher energy range (30 to 100 KeV)
 - Nanometric resolution
 - Time-Resolved Experiments!!

- **Push for:**
 - Better motion systems
 - Faster and More Efficient Detectors
 - Higher Data Throughput Capacity
 - Higher Data Storage Capacity

Sirius Storage Ring Schematics with first Beamlines: Available at [http://lnls.cnpem.br/sirius/beamlines/]
Future Experiments at Sirius

- Mogno (Micro and Nano Tomography Beamline)
 - Beam flux 2 to 3 orders of magnitude higher than IMX
 - Higher energy range (30 to 100 KeV)
 - Nanometric resolution
 - Time-Resolved Experiments!!

- Push for:
 - Better motion systems
 - Faster and More Efficient Detectors
 - Higher Data Throughput Capacity
 - Higher Data Storage Capacity

Sirius Storage Ring Schematics with first Beamlines: Available at [http://lnls.cnpem.br/sirius/beamlines/]
Today’s LNLS Standards

EPICS

EPICS as Middleware for communication over distributed systems

LabVIEW

LabVIEW as Development Tool for Drivers and Instrument integration in Driver Level

Galil DMC-4183

Galil DMC-4183 as Main Motion Controller For Today’s Applications. Even Advanced ones!!
Outer loop Controlled in EPICS Layer
- Single, unrepeated tasks
- Triggering wouldn’t affect Performance drastically
- Efficiency enhanced by Automation

Inner Loop Controlled via Hardware
- Sequential, repetitive tasks
- Reduction on Period time impacts directly on experiment duration
- Instruments Triggered by 5V TTL signals

Parallel tasks to HW Control
- Wait for images
- Update Motor Positions

System Architecture

Experiment Context Diagram:

- **Application Layer**
 - CS-Studio / Py4Syn Apps
 - Configuration Files (.txt, .par, ...)
 - 3D Recon. Apps

- **Service Layer**
 - EPICS Motor Record (Linux)
 - Scan Sequencer (LV-RT)
 - Camera Control (LV Windows)

- **Device & Driver Layer**
 - Controller in EPICS
 - DMC4183 Controller
 - PVT Mode Control
 - Digital I/O
 - Photon Ct (IO, It)
 - Fast Shutter
 - Detector (PCO 2000)

- Additional Components:
 - NI PXI
 - Buffer
 - Camera PC
 - Python .hdf5 Cubing
 - Image Queue
 - Disk Access
 - Digital PXI Signals
 - 1 – Galil Trigger in; Galil Latch in
 - 2 – Galil Trigger Out (Motor Sync)
 - 3 – Shutter Trigger
 - 4 – Shutter Sync
 - 5 – Camera IN: Exp. Trig.; Enable
 - 6 – Camera OUT: Acquire; Busy;
 - 7 – Gate Signal for Counters
 (Synchronized with Acquire Signal)

Galil DMC 4183 Implementation:

- **Point-To-Point Mode:**
 - Acquisition in charge: Motor as Slave
 - Wait for Trigger (at the Acq. End) to Move
 - Store Position When receive Trigger (Latch IN)
 - Move Pre-defined Distance (Output Level HIGH)
 - Output LOW when Motion Complete
 - Repeat until the end of Acquisition

- **Fly Scan Mode:**
 - Motors in charge: Detectors as Slave
 - Prepare Trip-points
 - Start Motion Trajectory (Output Level HIGH)
 - Pulse LOW at Trip-point arrival (To Acquire)
 - Store Position When Receive Trigger (Latch IN)
 - Repeat until the end of trajectory
Galil DMC 4183 Implementation:

- **Point-To-Point Mode:**
 - **Acquisition in charge:** Motor as Slave
 - Wait for Trigger (at the Acq. End) to Move
 - Store Position When receive Trigger (Latch IN)
 - Move Pre-defined Distance (Output Level HIGH)
 - Output LOW when Motion Complete
 - Repeat until the end of Acquisition

- **Fly Scan Mode:**
 - **Motors in charge:** Detectors as Slave
 - Prepare Trip-points
 - Start Motion Trajectory (Output Level HIGH)
 - Pulse LOW at Trip-point arrival (To Acquire)
 - Store Position When Receive Trigger (Latch IN)
 - Repeat until the end of trajectory

~50 Hz Capable with PCO2000!
Galil DMC 4183 Implementation:

- **Point-To-Point Mode:**
 - **Acquisition in charge: Motor as Slave**
 - Wait for Trigger (at the Acq. End) to Move
 - Store Position When receive Trigger (Latch IN)
 - Move Pre-defined Distance (Output Level HIGH)
 - Output LOW when Motion Complete
 - Repeat until the end of Acquisition

- **Fly Scan Mode:**
 - **Motors in charge: Detectors as Slave**
 - Prepare Trip-points
 - Start Motion Trajectory (Output Level HIGH)
 - Pulse LOW at Trip-point arrival (To Acquire)
 - Store Position When Receive Trigger (Latch IN)
 - Repeat until the end of trajectory
System Architecture

Experiment Context Diagram:

- CS-Studio / Py4Syn Apps
- Configuration Files (.txt, .par, ...)
- 3D Recon. Apps
- IMX Storage
- Disk Access

EPICS Motor Record (Linux)
- NI PXI
- Scan Sequencer (LV-RT)
 - ETH Socket
 - DigitalPXI 6602 Driver
 - ScalerPXI 6602 Driver

Camera PC
- Camera Control (LV Windows)
 - GigE
 - Memory
- Image Queue
- Python .hdf5 Cubing
- .bin access

Device & Driver Layer
- Controller in EPICS
- DMC4183 Controller
 - PVT Mode Control
 - Digital I/O
- X transl. stage
- Rotation Stage
- Fast Shutter
- Photon Ct (IO, lt)
- Detector (PCO 2000)
- Digital PXI Signals
 1 – Galil Trigger in; Galil Latch in
 2 – Galil Trigger Out (Motor Sync)
 3 – Shutter Trigger
 4 – Shutter Sync
 5 – Camera IN: Exp. Trig.; Enable
 6 – Camera OUT: Acquire; Busy;
 7 – Gate Signal for Counters
 (Synchronized with Acquire Signal)
Scan Sequencer:

- Runs as Hyppie Module
- State Machine with Pre-programmed sequences
- EPICS communication reduced to Necessary-Only when scanning
- All trigger signals centered on PXI board NI-6602
Scan Sequencer:

- Runs as Hyppie Module
- State Machine with Pre-programmed sequences
- EPICS communication reduced to Necessary-Only when scanning
- All trigger signals centered on PXI board NI-6602
System Architecture

Scan Sequencer:

- Runs as Hyppie Module
- State Machine with Pre-programmed sequences
- EPICS communication reduced to Necessary-Only when scanning
- All trigger signals centered on PXI board NI-6602

On-The-Fly Scan Path:
System Architecture

Experiment Context Diagram:

System Architecture

CS-Studio Screens:
System Architecture

Experiment Context Diagram:

- Application Layer
 - CS-Studio / Py4Syn Apps
 - Configuration Files (.txt, .par, ...)
 - 3D Recon. Apps
 - IMX Storage

- Service Layer
 - NI PXI
 - EPICS Motor Record (Linux)
 - Scan Sequencer (LV-RT)
 - ETH Socket
 - Digital PXI 6602 Driver
 - Scaler PXI 6602 Driver
 - Camera PC
 - Camera Control (LV Windows)
 - GigE
 - Memory
 - Image Queue
 - Python .hdf5 Cubing
 - .bin
 - Image
 - Digital PXI Signals
 1 – Galil Trigger in; Galil Latch in
 2 – Galil Trigger Out (Motor Sync)
 3 – Shutter Trigger
 4 – Shutter Sync
 5 – Camera IN: Exp. Trig.; Enable
 6 – Camera OUT: Acquire; Busy;
 7 – Gate Signal for Counters (Synchronized with Acquire Signal)

- Device & Driver Layer
 - Controller in EPICS
 - DMC4183 Controller
 - PVT Mode Control
 - Digital I/O
 - Fast Scan Parameters (HW Scan Task)
 - Slow Scan
 - X transl. stage
 - Rotation Stage
 - Fast Shutter
 - Photon Ct (IO, It)
 - Detector (PCO 2000)
 - 1 2 3 4 5 6 7
 - 1 2
 - 3
 - 4
 - 5
 - 6
 - 5

How To Get All This Data???

Network Considerations for Camera Control PC:

- Network configuration for Big Data: Jumbo Package Size and Big Coalescence Buffers
- TOE board from Camera to Camera PC
- QoS configuration at all switches until the Storage
- GPFS Storage (Cost-Effective Scalability!!)
- Data Processing done by storage location mounting
Low Resolution Demo Experiment:

- 1000 Projections, 10 ms exposure time of Bamboo Toothpick
- 2048x256 images, with 1x8 binning (0.82x6.56 microns pixel size)
- Continuous, Point-to-Point, and On-The-Fly Acquisition Modes
- 20 Hz Acquisition, 200 Mb/s data transfer for On-The-Fly Scan

Results

HW Pt-to-Pt (88 sec)

Conventional (8.5 min)

On-the-Fly (49 sec)

~6x Faster!

~10x Faster!

Conventional minus HW Pt-to-Pt

Conventional minus On-The-Fly
CONCLUSIONS

- Reduced Beamtime per user
- Low Res. 4D Tomography Possible at IMX Beamline
- System Capability proved in the unitary millisecond range
- System derivations and Other advanced Developments at LNLS:
 - XRF Beamline: Mapping Scans ICXOM’15
 - PGM Beamline: Undulator and Monochromator ad-hoc Continuous Energy Scans ICALEPCS’15 MOCRAF
 - SAXS1 Beamline: Experiment Automation ICALEPCS’15 MOPFG057

- System Scaling and Upgrades:
 - Faster and More Precise Rotation Stages
 - Faster and More efficient Detectors
 - Continuous Improvement to Hyppie
 - Continuous Improvement to the network capacity
Acknowledgments

IMX Beamline Staff:
- Frank O’Dowd;
- Eduardo Miqueles;
- Nathaly Archilha;
- Mateus Cardoso;

Other Contributions:
- GAE Group, LNLS;
- SIL Group, LNLS;
- SOL Group, LNLS;
- Harry Westfahl Jr.