Replacing the Engine In Your Car While You Are Still Driving It

Eric Björklund
Los Alamos National Laboratory

LA-UR-27876
Lessons Learned
From A Very Ambitious Upgrade Program
Complete With:
3 Observations &
2 Recommendations
For Anyone Contemplating A
Similarly Ambitious Upgrade
The Scope Of The Project

- Install New Network Backbone
- Replace 201 MHz RF Tubes
- Replace Low-Level RF System
- Replace Timing System
- Replace Industrial I/O System
- Replace Beam Synchronous Data Acquisition System
- Replace Fast Protect Reporting System
- New Wire Scanner Hardware
- New Beam Position/Phase Monitor Hardware
The Scope Of The Project

- Install New Network Backbone
- Replace 201 MHz RF Tubes
- Replace Low-Level RF System
- Replace Timing System
- Replace Industrial I/O System
- Replace Beam Synchronous Data Acquisition System
- Replace Fast Protect Reporting System
- New Wire Scanner Hardware
- New Beam Position/Phase Monitor Hardware
- Continue Delivering Beam To Our Customers
The Scope Of The Project

- Install New Network Backbone
- Replace 201 MHz RF Tubes
- Replace Low-Level RF System
- Replace Timing System
- Replace Industrial I/O System
- Continue Delivering Beam To Our Customers

- Replace Beam Synchronous Data Acquisition System
- Replace Fast Protect Reporting System
- New Wire Scanner Hardware
- New Beam Position/Phase Monitor Hardware
Old Timing System

- 96 discrete timing gates (maximum).
- Each gate individually distributed via dedicated coax cables.
- ~1 uSec resolution.
Old Timing System

• 96 discrete timing gates (maximum).
• Each gate individually distributed via dedicated coax cables.
• ~ 1 uSec resolution.
Old Timing System

- 96 discrete timing gates (maximum).
- Each gate individually distributed via dedicated coax cables.
- ~ 1 uSec resolution.
New Timing System

- Commercial event system from Micro Research Finland.
- VME, Compact PCI, Compact RIO.
- 255 events.
 - Potentially as many gates as you want.
- Event link distributed over 2.5 GHz fiber optic cables.
- 10 nSec resolution.
Old Timing Distribution System
New Timing Distribution System
Observation 1: You can’t replace the whole system at once.

“If you don’t have a schedule, how will you know what you’re deviating from?”
Observation 1: You can’t replace the whole system at once.

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>Sectors A/1 HVAC</td>
</tr>
<tr>
<td>2014</td>
<td>LANSCE-RM 201 RF Replacement Module 2</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>LANSCE-RM 201 RF Replacement Module 4</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>LANSCE-RM 201 RF Replacement Module 3</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Routine Maintenance</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Yellow: Turn on
- Red: Outage
- Green: Run Cycle
- Light Green: Warm Stand by
- Dark Red: Outage w/ IPF production
Observation 1: You can’t replace the whole system at once.
Observation 1: You can’t replace the whole system at once.
Observation 1: You can’t replace the whole system at once.
Negotiating the schedule is like driving over the mountains.
The Maintenance Periods

STARTING DOWN HILL! DISCONNECT THE TRANSMISSION!
The Operational Periods
The Startup Periods
Observation 2: Some compatibility must be maintained between the old and new systems.
Observation 2: Some compatibility must be maintained between the old and new systems.

Question: Can one accelerator be governed by two timing systems?
Observation 2: Some compatibility must be maintained between the old and new systems.

Can one accelerator be governed by two timing systems?

Final answer: **NO!**

Jitter between the two AC zero crossing detectors prevents running in parallel.
Observation 2: Some compatibility must be maintained between the old and new systems.

Can one accelerator be governed by two timing systems?

Solution:
Observation 2: Some compatibility must be maintained between the old and new systems.

Can one accelerator be governed by two timing systems?

• Disconnect old system from its distribution.

Solution:
Observation 2: Some compatibility must be maintained between the old and new systems.

Can one accelerator be governed by two timing systems?

Solution:

- Disconnect old system from its distribution.
- “Legacy Gate Replicator” – 10 event receivers (160 gates total) programmed to duplicate the gates generated by the old system.
Observation 2: Some compatibility must be maintained between the old and new systems.

Can one accelerator be governed by two timing systems?

Solution:

- Disconnect old system from its distribution.
- “Legacy Gate Replicator” – 10 event receivers (160 gates total) programmed to duplicate the gates generated by the old system.
- Connect LGR to old distribution system.
Observation 2: Some compatibility must be maintained between the old and new systems.

Can one accelerator be governed by two timing systems?

Solution:

- Disconnect old system from its distribution.
- “Legacy Gate Replicator” – 10 event receivers (160 gates total) programmed to duplicate the gates generated by the old system.
- Connect LGR to old distribution system.
- Old distribution now “slaved” to new timing system.
Recommendation 1: Always have a way to fall back.

ARGH! MY ENGINE'S MISSING!

DON'T PANIC. I HAVE A SPARE IN MY TRUNK.
Recommendation 1: Always have a way to fall back.

- Keep old systems available for at least a year.
- May need to quickly revert to old system for operational period.
 - Even if the new system is working perfectly.
Recommendation 1: Always have a way to fall back.

Timing System Fall-Back Plan:
- *Old system is disconnected but still in place.*
Recommendation 1: Always have a way to fall back.

Timing System Fall-Back Plan:
• Old system is disconnected but still in place.
• Disconnect Legacy Gate Replicator and re-connect old system.
Recommendation 1: Always have a way to fall back.

Timing System Fall-Back Plan:
- *Old system is disconnected but still in place.*
- *Disconnect Legacy Gate Replicator and re-connect old system.*
 - Involves moving four ribbon cables.
Recommendation 1: Always have a way to fall back.

Redundancy: “falling back” to the new system

• Originally planned on redundant systems for reliability.
• Also turned out to be a good way to fix problems while still providing timing gates.
Observation 3: You will be surprised.
Observation 3: You will be surprised.

- You will be surprised at how long old equipment can keep running!
 - Long after designers have retired.
 - Long after spares are available.

- You will be surprised to discover what you didn’t know!
 - Hidden design “Features”.
 - Undocumented inter-system dependencies.
Observation 3:
You will be surprised.

Example: We knew there would be a skew between signals generated from the event link (new distribution) and the LGR (old distribution).

So make sure all the signals to a piece of equipment come from the same source (old or new distributions).
Observation 3: You will be surprised.

- LLRF needs features of the new timing system – use new distribution.
Observation 3: You will be surprised.

– LLRF needs features of the new timing system – use new distribution.
– Machine protection does not need new features – keep old distribution.
Observation 3: You will be surprised.

- LLRF needs features of the new timing system – use new distribution.
- Machine protection does not need new features – keep old distribution.
Observation 3: You will be surprised.

The machine protection system also gets inputs from various monitoring devices.
Observation 3: You will be surprised.

Including a signal from the Low-Level RF System

Old Distribution

Legacy Gate Replicator

New System

New Distribution

AP

XM

LM

RM

Machine Protection

Low-Level RF
Observation 3: You will be surprised.

Including a signal from the Low-Level RF System …which is derived from new timing system signals.
Observation 3: You will be surprised.

Including a signal from the Low-Level RF System …which is derived from new timing system signals.

Resulting in solid machine protection faults!
Observation 3: You will be surprised.

Reconfigure:
Supply machine protection system with gates from the new distribution.
Recommendation 2: Sympathy for the operations staff.
Recommendation 2: Sympathy for the operations staff.

How many laboratory employees does it take to change a light bulb?
Recommendation 2: Sympathy for the operations staff.
Recommendation 2: Sympathy for the operations staff.

Change is Hard:

- It is even harder if the change is a surprise.
- Even a “good” change is still a change.
- What is gained from the new is often eclipsed by what is lost from the old.
- **Bottom Line:** The machine does not work the same way anymore.
 - New timing system altered the way an entire section of the accelerator behaved because of a change in how the beam was chopped.
Recommendation 2:
Sympathy for the operations staff.

Keeping Operations In The Loop:

- Training sessions
- Involve operations personnel in design reviews
- Involve operations personnel in installation activities
 - Operations global perspective vs system engineer’s local perspective.
Thanks…

Special Thanks To Kristi Carr

(the Carr-Toonist)
Thanks…

And Thank You For Your Attention!