REUSABLE PATIENT SAFETY SYSTEM FRAMEWORK FOR THE PROTON THERAPY CENTRE AT PSI

P. Fernandez Carmona, M. Eichin, M. Grossmann, E. Johansen, A. Mayor, H.A. Regele
1. Introduction
2. Requirements of the project
3. Patient Safety System (PaSS) concept
4. System architecture
5. Verification and validation
6. Results: Improvements
7. Conclusion
Introduction

Proton Therapy at the Paul Scherrer Institut

Patient treatment areas:

- Gantry 1 (1996)
- Optis 2 (2010)
- Gantry 2 (2013)
- New Gantry 3

Developed in house
Commercial from Varian Medical Systems
Requirements of the new design

- Implement same safety functionality as in other areas. Most safety elements are centralised
- Interface Gantry 3 proprietary control system to the existing PSI infrastructure as part of PaSS
- Specifications not fully defined yet
- Expected lifespan 20 years
- Restricted time and manpower
- Use cases:

 - Therapy
 - Help
 - Overview
 - EPICS
 - PaSS
 - TCP
 - GUI Server
 - History
 - Log file

 Operating physicist

 Radiologist technician

 Developer, Experimental user

 TCP

 EPICS

 GUI Server

 History

 Log file
Patient Safety System concept

ALOK
- Close local beam blocker
- Activate deflector magnet

ATOT
- Close main blockers,
- Stop proton acceleration at cyclotron
- ALOK actions

ETOT
- Switch off the cyclotron’s acceleration system
- Switch off the ion source
- ALOK + ATOT actions
Patient Safety System overview

- PSI Therapy Control System
- Operator Console
- Patient Gating System
- Beam Monitors
- Beam Tuning Verification System
- Beam Blockers
- Vendor’s Gantry Therapy Control System
- Main Patient Safety Switch and Controller
- Cyclotron
- Beam Blockers
- Signal Converter Box
- Patient Safety System
- Graphical User Interface

ICALEPCS15, Pablo Fernandez Carmona, TUC3004
System architecture: Hardware

IOC: IFC1210
- COTS with PowerPC Dual core and user FPGA
- VME bus
- 2 FMC Mezzanines
- Boot from server, remote configuration, Linux OS

Signal Converter Box
- Specific design (Subcontracted)
- Configurable Multiplexer
 - 6 SFP for gigabit optical communication
 - 10 plugin ports

Plugins: Optical, TTL, 3 wire logic, redundant 24v…

Reusable Hardware

ICALEPCS15, Pablo Fernandez Carmona, TUC3004
Tosca Network on Chip (IOxOS)
Shared resources:
 Memory, DMA, Configurable clocks…
User specific block
 Optical links protocol
Generic framework
 Gantry specific logic
All resources can be mapped to io memory
EPICS driver maps FPGA resources to records
 - Interlock status
 - Control variables
 - Configurable measurements

Java GUI to access all records

User visualization
 - Operation and debug
 - Visualize and log interlock events

Tools for QA
 - Statistics
 - Trends, defects, deterioration ...

Built-in measurements
Configuration file generator

- EPICS configuration template
- C memory definition
- Xml GUI configuration
- Framework package
- Memory block
- Optical communication decoder
There is no official procedure to get a license to do proton therapy in Switzerland

What worked in the past for us:

Preparation
- Risk analysis
- Design specification
- PaSS Implementation
- Test specification

Developed by different people

Unit test in the lab
- Firmware simulation with Modelsim
- Extensive test with LabVIEW generated stimuli

Integration test in the therapy area, full QA
- Test all functions
- Test all final elements
- Generate errors and monitor PaSS response
Results: improvements

Functional PaSS with EPICS GUI in time for gantry integration

Extra functionality built in:
 Improve work tools for physicist for error debugging:
 Deterministic time tracking of interlock events
 GUI describes detailed status, source, destination and properties of all signals
 Reduce time needed for Quality Assurance
 Built-in measurement of response time of safety elements
 Many statistics available

Development time
 Comparison with the development in 2009 of the Optis PaSS (Similar system, some assumptions made)

<table>
<thead>
<tr>
<th>G3 IOC + SCB FW</th>
<th>Optis PaSS FW</th>
<th>~40% less</th>
</tr>
</thead>
<tbody>
<tr>
<td>165 man days</td>
<td>310 man days</td>
<td></td>
</tr>
</tbody>
</table>
A reusable, modular Patient Safety System was built to integrate a new commercial gantry in the existing infrastructure of the Center for Proton Therapy at PSI.

- Reusing technology: sophisticated solution, highly customised, with restricted manpower and time.
- Separation into generic and gantry specific: Fast deployment in other facilities, with only small adaptations being needed.

- GUI extensive information and deterministic log of interlock events can reduce the physicist’s response time when called by radiographer technicians

- Including built-in debug, visibility and measurement elements make possible automating some QA tasks and to predict failures by ageing and deterioration of several components.
Thank you for your attention